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The advent of component software may be the most important new development in the software industry 
since the introduction of high-level programming languages. Component software combines the advantages 
of custom software and standard software. It enables solutions which are better evolvable, i.e., which scale 
better, are more readily maintainable, can be extended over time, and can be modernized incrementally.

1 Make or Buy?

Today, if you want to solve a business problem by software, one of the first questions you must answer is: 
make or buy? Do you want to develop the solution from scratch, or buy it off the shelf? The best answer 
depends on your particular situation and on what is available on the market, but the answer is rarely as clear-
cut as you may like.

1.1 Custom software

Writing your own custom software has important advantages. You have full control over the software, so you 
can fully adapt it to the changing needs of your business. This is important, since business needs change all 
the  time:  mergers,  acquisitions,  layoffs,   new competitors,  new  partners,  new products,  new laws,  the 
Internet; there are many reasons why software needs adaptation to new requirements. If your software better 
supports your business than your competitor's does, you have a strategic advantage.
However, custom software also has severe disadvantages. It is typically much more expensive than standard 
"shrink-wrapped"  software and its  development  can take a long  time.  Long time-to-market  is  especially 
critical, since by the time the software is ready, it may already be obsolete, because your business needs 
have changed again already.

In the last decade, the complexity of software environments has increased tremendously. Highly interactive 
PCs with extensive multimedia capabilities, networks ranging from local area networks to the Internet, and 
demanding graphical user interfaces lead to an explosive growth in both operating system complexity and 
application complexity. To remain competitive, every new release of an application has to support at least 
some of the new capabilities of the operating system and hardware. This trend leads to ever more features, 
larger  software  ("fatware"),  longer  development  cycles,  and  last  but  not  least,  to  more  defects  in  the 
produced software.
To keep up with these increasing challenges becomes harder and harder. Thus it is not surprising that the 
risks of custom development are avoided whenever possible. Instead, people shop for standard software.
Of course, buying standard software is only possible if at least one vendor has already developed software 
for this market niche. The more specialized your requirements are, the smaller is your market niche, and the 
less likely it is that you find an off-the-shelf solution. If there exists no standard solution for your problem, this 
also affects your competitors. In such a situation, with no standard software to level the playing field, custom 
software can give you a critical advantage over your competitors.

The financial  services market is a good example of where custom software often still  makes sense. For 
example,  a bank may develop its own balance sheet rating application,  hoping to better  judge the risks 
involved in business loans, and thereby reduce the losses caused by loans that are not paid back.
Figure 1-1 shows the software features that may apply to a given type of  market,  e.g.,  for the financial 
services market, and the percentage of customers in this market who can use these features [Beech]. To the 
left side, the most commonly used features are located. To the right side, the features desired only by one 
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customer are located. Custom software works best for products targeting the right side of the spectrum, 
since there the market is too small for standard software.

Figure 1-1. Spectrum of required features

1.2 Standard software

Standard software is software that you can buy off-the-shelf. Everything you can buy in a store is standard 
software: word processors, drawing packages, time planners, games, etc. There also exists more specialized 
standard software for particular types of businesses, e.g., packages for dentists, accounting software, and so 
on.
Standard software is inexpensive, at least compared to the cost of custom software development. Buying 
standard software can be done quickly, in particular if you already know which product to buy. Someone may 
have recommended an application to you, or you may have read reviews and comparisons in journals. This 
limits the risk you take.

Once you have bought the software, you need to install  it.  This can be quite a  challenge, since many 
applications have extensive configuration facilities, allowing to fine-tune them to specific needs - up to a 
certain  degree.  Some  high-end  commercial  packages  go  to  extremes  in  this  respect.  They  provide 
thousands of parameters that have to be set up appropriately. This can be so complex that it is unpractical 
without the help of expensive systems integrators.
Even though standard software may provide extensive configuration features, it still forces you to adapt your 
business to the needs of the software, rather than the other way around.

Word processors are a prime example for standard software. Every new generation of word processors adds 
new features, if only to keep up with the competition. Often, these features are of little use to most buyers, 
but still  everyone must pay for them. Since standard software is sold in large volumes, the costs of the 
software alone may even be very low. But there are hidden costs, e.g., the cost involved in training, or in 
upgrading to more powerful  hardware. The latter  is often necessary because a new software release is 
typically  much  larger  and  slower  than  its  predecessor.  Operating  systems  are  further  examples  of  this 
fatware trend: when your company switched from Windows 3.11 to Windows 95, how much money did it 
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spend for hardware upgrades or replacements?
Standard software works best for products that address the left side of the spectrum of required features, i.e., 
where the features required by a large percentage of customers are located. Fatware is standard software 
that tries to implement too many features that are too far to the right side of its market's spectrum of required 
features.

2 Make and Buy!

Ideally, we would like to combine the advantages of full custom software and standard software: tailored 
software at the price of off-the-shelf software. Unfortunately, this is asked for too much. Fortunately, there is a 
practical way of getting at least closer to this ideal. The idea is simply to combine custom and standard 
software. Why shouldn't it be possible to buy 70% of an application in a store, and to develop the remaining 
30% in-house? For example, a balance sheet rating application may consist of word processing and rating 
functionality. Why not buy a word processor, develop the rating algorithm, and then assemble the two pieces 
into a complete balance sheet rating solution?
Obviously this is only possible if software pieces from different origins can be composed such that they work 
together in a meaningful way. Such software building blocks are called software components, in contrast to 
monolithic software.
Most "new" business applications can be implemented as modifications to, or new groupings of, existing 
components.

2.1 What is component software?

It  is  a  fundamental  requirement  of  component  software  that  components  may  be  developed  and  sold 
independently of each other, and yet can be combined by the customer. The notion of "selling" is crucial, 
since obviously you can't buy software components if there is no component market. We will later talk about 
various technical aspects of components and about industry standards, but those can only be a means to an 
end. At the end of the day, the only thing that counts for the buyer is the existence of a component market. 
Definitions of software components should reflect this fact. In particular, we don't consider modular or object-
oriented software automatically to be component software. These internal structuring techniques are invisible 
to, and thus irrelevant for, the only person who can make the whole approach work: the one with money.

The following definition, based on results of the 1996 Workshop on Component-Oriented Programming in 
Linz [WCOP96], will serve as a basis for the discussion of component software in the next sections.

A  component  is  a  unit  of  composition  with  a  contractually  specified  interface  and  explicit  context  
dependencies  only.  Components  can  be  deployed  independently  of  each  other  and  are  subject  to  
composition by third parties.

The  market-relevant  terms  here  are  "independent  deployment"  and  "composition  by  third  parties".  The 
remaining terms are of a more technical nature. We will talk about interfaces in more detail in section 3.2, 
and about the above definition in section 4.1. Since all dependencies between a component and its context 
are specified in its interface (see Figure 2-1), the component can be substituted by another one with the 
same interface. For example, a component may be replaced by a newer version without affecting other 
software.  If  interfaces  are  widely  published,  independent  vendors  can  start  to  provide  compatible 
components. An interface thus becomes a standard which creates a market, with competing vendors and 
with choice for customers.

3



Figure 2-1. A software component is a black box where all interactions occur through a published interface

Given the above definition of components, then component software is a composition of components, some 
of which may be standard components and others may be custom components (see Figure 2-2).

Figure 2-2. Component software as assembly of standard and custom components

This means that  component sofware defuses the critical  decision between making custom software and 
buying standard software. Currently we are in a transition period in which old monolithic applications are 
opened up by adding application programming interfaces - some of them quite general (e.g., using Microsoft 
COM and OLE), some of them more specialized (e.g., for Netscape Plug-Ins). Microsoft's Office suite is an 
example of a collection of heavy-weight components, most of them derived from monolithic applications, with 
all their associated overhead.
More light-weight components are also starting to appear (e.g., ActiveX control objects, Cyberdog objects, or 
Java "beans"). The full benefits of component software will only be reached if many components become 
available that are highly focused (and thus relatively small), as this book will demonstrate.

2.2 Advantages for vendors

Decomposing  software  into  components  follows  the  old  adage  of  "divide  and  conquer".  By  splitting  a 
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complex problem into simpler  problems which can be solved independently, the problem becomes more 
manageable.  This  software  engineering  aspect  of  component  software  is  important  for  every  kind  of 
software, whenever it grows beyond a few hundred lines of code. Of course, the larger and more complex a 
project  is,  the  more  important  the  modularity  of  component  software  becomes.  For  large  problems, 
modularity also becomes important because it makes team development possible, where different members 
of a programming team implement different components simultaneously.
Components can be developed in parallel if it is clearly defined in advance what each component should 
provide, so that a programmer can immediately use the interface of a component currently being developed 
by another team member - even though its implementation doesn't exist yet. For this to work, it is important 
that a component's interface be clearly defined and completely decoupled from its implementation, which 
then can be regarded as a black box. In other words: we don't care what a component looks like internally, in 
which  programming  language  it  is  implemented  (C++?  Component  Pascal?  Assembler?)  or  in  which 
programming style it is implemented (procedural? functional? object-oriented? spaghetti-coded?), as long as 
it is a correct implementation of its interface.
It may happen in a software project that someone remembers that some part of the current problem had 
already been solved for an earlier project. If this partial solution has the form of a separate component, it can 
be reused in the new project, thus saving time and cost.
A component implementation can be replaced by a new version if its interface remains the same. This makes 
it  possible,  e.g.,  to send an incremental  update  to a customer,  rather  than a new release of  the entire 
application (or operating system). Hence, only a corrected or otherwise improved component needs to be 
sent to the customer.

So far, the outlined advantages of component software have been mostly traditional software engineering 
advantages. They are desirable in any type of large-scale software development project.  But component 
software is much more than good software engineering. The main advantage of component software is the 
creation of markets. Component markets mean that a developer can buy the more generic features of a 
desired application, and concentrate on the more specific features that make the application truly valuable to 
the customer. Thus component software lets small developers focus on their core competence and achieve 
shorter time-to-market. It breaks the trend towards software that is so large and complex that only a few 
vendors can keep up, while small developers are driven out of business.
If a component is of sufficiently general interest, it can be sold on the market. While this possibly results in a 
loss of a competitive advantage for the component vendor, it may generate enough license revenues to be 
attractive.

Looking back at all the advantages we've discussed, we can see that the majority of developers, i.e., small 
and medium companies, have no business interest in monolithic software. They can only profit from a move 
towards component software. But interestingly enough, the large companies, which could have more vested 
interest in sticking to monolithic software, are also shifting towards component software. Probably this is 
because the maintenance and further  development of  their  monolithic fatware has already turned into a 
software engineering nightmare so precarious that even unlimited resources won't help anymore.

2.3 Advantages for buyers

Component software also has important advantages for its buyers. They get customized solutions quicker. 
They can save time by buying components  on the  market,  and thereby it  becomes less likely  that  the 
solutions are obsolete by the time they are ready for use.
Component software allows to add new functionality over time, by adding new components to an already 
existing solution. In this way, a solution can be extended to handle new needs over time.

In order to use a component, a programmer must have access to its interface description. If the interface is 
clear and complete, any competent programmer could develop an alternative to an existing implementation. 
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For example,  assume that you have a word processor Write and a spelling checker Spell.  The spelling 
checker allows you to spell-check Write texts, i.e., it uses the Write programming interface. Now, if the better 
word processor WritePro comes on the market, you want to substitute WritePro for Write, without buying a 
new spelling checker. This is possible if WritePro implements the same interface as Write does (or a strict 
superset of it), and if Spell only accesses a text via this interface. In this example, you have replaced one 
component by another one that implements the same interface.
Replacing an old component by a new one without invalidating other components is an important advantage. 
It  allows  to  evolve  a  software system not  only  by  adding  new,  but  also  by replacing  old  components. 
Outdated "legacy" software becomes less of a problem, because migration to new software can be done 
incrementally, without losing all investments in existing software. 

This is one of the most important characteristics of component software: it replaces "either/or" decisions by 
more  gradual,  and  thus  less  critical,  decisions.  The  question  is  not  whether  or  not  to  replace  existing 
software anymore; the question rather becomes which components to replace. The question is not "make" or 
"buy" anymore; the question rather becomes which components to buy and which components to develop. 
Component software introduces gradual choice where previously there were only hard absolute decisions. 
Figure 2-3 illustrates the gap in the spectrum between "make" and "buy"; this gap is closed by component 
software:

Figure 2-3. Gap between developing everything from scratch and buying everything off-the-shelf

No company will ever be able to develop the best-of-breed products in every possible software category and 
to integrate them all into one package. Component software allows the buyer to pick and choose the best 
products among all vendors in the world, and integrate them in a plug-and-play manner. The larger and more 
diverse component markets become, the more leverage a buyer has in building a uniquely powerful and 
customized software environment.
For complex problems, buyers may still rely on systems integrators to do the integration of components, but 
the dependence on single vendors or integrators is much less than it was with either custom or standard 
software.
Because of this new freedom of choice, the software industry in the long run will likely become much more 
customer-driven than it is today. Why? Because customers and customer-driven organizations can propose 
new component interfaces. Such component interfaces, standards in fact, create markets by forcing vendors 
to compete with each other in creating better implementations of these interfaces.
Components can create a world-wide mass market with fierce competition. The idea of component software 
is to tap the entire potential of a global software economy, rather than relying on the limited capabilities of 
only one vendor. Component software simplifies the cross-over of good ideas. After all, even a market leader 
can steal and reimplement only a few good ideas per new release of a software package; there's just no way 
he can compete with all the developers on the planet, once they start to build interoperable components. 
Cross-over makes new good ideas gain market share in an explosive way. Monolithic software with its linear 
growth of good ideas cannot compete with this advantage of component software.
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We have seen that component software is in the interest of small and large vendors, software integrators, 
and buyers. Everyone wins. But are there domains where component software simply doesn't work?
If  we look at the spectrum of required features (see Figure 1-1) it becomes clear that the most obvious 
candidates for component software are the products in the middle of the spectrum, i.e., features which are 
desired by many, but not by all, customers. There it makes most sense to create a component market. If  
everyone had completely unique requirements, there would be no market for reusable components. On the 
other hand, if  everyone had exactly identical  requirements, there wouldn't  be room for more than a few 
vendors.
However, even these left and right extremes of the spectrum benefit from component software, due to its 
inherent software engineering advantages, in particular its better evolvability.  But it is more expensive to 
dethrone established market leaders in these areas.

Today many people still believe that their particular field cannot benefit from component software. It is argued 
that a domain is too complex, or that there is no market in this domain, and so on. Often, these beliefs come 
from  a  lack  of  experience  in  the  design  of  modular  software.  Very  complex  pieces  of  software  have 
successfully been turned into components, e.g., whole operating systems. The complexity of a problem does 
not prevent component software. On the contrary; without a divide-and-conquer strategy such as component 
software, truly complex problems cannot be handled anymore. Even specialized domains such as embedded 
systems look like promising opportunities  for  component  software,  since there  the spectrum of  required 
features looks very good, with many features in the middle of the spectrum. The market in this domain is still 
underdeveloped, but that doesn't mean that it cannot grow into a strong one.

Yet in spite of all its compelling benefits, component software is no "silver bullet". It doesn't suddenly solve all 
software  problems.  Component  implementation  is  still  a  difficult  engineering  problem.  The  design  of 
component interfaces is even more challenging. It takes well educated and experienced engineers to do it. 
Developing a truly reusable high-quality component cannot be achieved "in one shot"; it requires iterative 
improvement over a long time, and therefore is expensive. Even pure component assemblers - in spite of 
customer hopes and vendor promises - won't get very far "without the need for programming".
Component software may abate the software crisis, and it certainly is a necessary and solid foundation for 
future generations of software. But even component software can only reduce complexity by so much; it is no 
protection against ever increasing, and often unreasonable demands, put on software.

2.4 Compound documents as market catalysts

Once  it  was  hoped  that  computers  will  make  possible  the  paperless  office.  The  opposite  did  happen: 
producing paper is one of  the most  effective uses of  computers.  There are many applications that  help 
producing printable documents: word processors, graphics editors, spreadsheets, graphing programs, etc. A 
user wants to be able to combine all these types of output into one document. For example, if your favorite 
mathematical  equation editor  is not  part  of  your favorite word processor,  you still  would like to use the 
equation editor to produce equations and put them into a text written with your word processor. This is a 
typical case where you want to use the best products of different vendors in a plug-and-play manner, rather 
than hoping that one single company will be best in all possible domains of document preparation.
From a user's perspective, it is not intuitive that a document being edited belongs to a particular application, 
and that switching applications may require converting documents between different storage formats. If you 
are a sculptor, you don't enter the hammer tool, use it, then move the sculpture to the chisel tool, enter the 
chisel tool, use it, move the sculpture back, etc. That would be a grotesque way to work, but that is how we 
still use computers today.
Ideally, an editor should merely be a tool to manipulate a particular kind of document contents, such that it 
can be used side by side with other tools. This results in a document-centric view of computing, where a user 
opens,  manipulates,  and closes documents  instead of  applications.  For  example,  you may open a text 
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document, insert a picture into the text, click into the picture, and then edit the picture. Such a composition of 
different types of data in a document is called a compound document. A compound document is a hierarchy 
of  document  objects,  where  some of  them may be containers.  A container  may contain  arbitrary  other 
document objects, in addition to its so-called intrinsic contents. For example, a text container may contain 
pictures, tables, other texts, and so on; in addition to a sequence of characters (its intrinsic contents). The 
following figure shows a compound document containing text, a table, and a drawing. The table, like the text, 
is a container. It contains other text and a clock:

Figure 2-4. Example of a compound document

A compound document is a composition of visual objects. Each type of object requires its own editor, e.g., 
there must be a text editor for the text objects that are currently displayed. Ideally, it should be possible to 
add new editors anytime. If this is the case, an editor becomes a software component.
Compound  documents  imply  composition  in  several  ways.  Obviously,  all  objects  in  a  document  are 
geometrically composed in some way. When displayed, they share the window in which they are displayed. 
When saved, they share the file in which they are stored. The objects also share mouse and keyboard. For 
this purpose, at any point in time one of the document's objects must be distinguished as current target for 
mouse and keyboard input. This is called the focus of the document. In Figure 2-5, the focus is visually 
distinguished by its hatched border:
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Figure 2-5. The table object of this OLE document is currently focussed

A Web page with pictures, icons, buttons and embedded applets can also be regarded as an example of a 
compound document.  In  all  our  examples  so far,  texts  act  as  containers  for  arbitrary  embedded visual 
objects. From here on, we will call such a visual object a "view". Every type of view is implemented by its 
own software component. Writing texts with embedded views effectively becomes software composition from 
an end user's perspective.

Compound  documents  are  much more  general  than  the  term  "document"  may  imply.  The  views  in  a 
document  may  be  active,  e.g.,  they  may  be  running  movies  or  showing  a  TV  channel.  They  may  be 
interactive, i.e., react on the input of a user. For example, a push button may cause some action when the 
user clicks on it. Such interactive user interface elements are commonly called controls.
What does a control have to do in a document? A document that mainly contains controls becomes a dialog 
box or a data entry mask. These things are not usually considered to be documents; but treating them as 
documents has many advantages. For example, there needs to be no separate dialog box editor ("visual 
designer", "screen painter"), just a suitable form container. Furthermore, a dialog box form is stored as a 
document. This is useful, e.g., to later adapt its contents to another language, e.g., from English to German, 
without  needing to  recompile  anything.  In  other  words:  the  actual  code  is  largely  separated  from user 
interface details such as button locations, text field captions, etc. Figure 2-6 shows the layout of a data entry 
form, and a second view of the same form in a mode where it can be used, rather than edited:

Figure 2-6. Data entry form in a layout-mode view (bottom) and in a mask-mode view (top)

If your application has any kind of user interface at all, it can be implemented with a compound user interface 
(except for embedded systems with specialized man-machine interfaces such as bar code readers). This 
means that your component will be based, or at least use, compound documents, even though you might 
never have thought about your application as being even remotely involved in document processing.

As an example, Figure 2-7 shows the user interface of a logic simulator implemented as a compound user 
interface. As the ruler and the cursor shape indicate, the control container is a text view. The simulator uses 
many text editor features, such as tabulators and multiple fonts, or the scrolling facilities of the text container. 
Implementing such a rich user interface from scratch would be unnecessarily time-consuming. Compound 
documents  allow  code  reuse  by  composing  user  interface  elements.  Note  that  the  only  user  interface 
controls specific to logic simulation are the views which show signal shapes; one of them (Q[0]) is selected. 
Once the user interface is completed, the container can be switched into another mode where it cannot be 
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edited anymore, but where it can be used just like any other application.

Figure 2-7. Compound user interface of a logic simulator, using a text container and special signal shape 
controls

We have seen buttons, text entry fields, rulers and signal shape views as examples of controls. A control is a 
user interface element which cooperates with its container. A control by itself does not make sense; it only 
becomes useful in conjunction with its container context and the other controls therein. A control is a prime 
example of  a light-weight component completely specialized to a particular functionality.  It  is only useful 
when embedded in (i.e., composed with) other components, e.g., text views or form views. A user interface 
that is built out of controls in a compound document, like the logic simulator example above, is called a 
compound user interface.

Interactive components which are self-contained, and thus can be used individually as documents or be 
contained in some other document, are called editors. For example, a 3D drawing or a spreadsheet can be 
used both stand-alone or as part of another document. Container views are the most advanced kind of editor 
views.

Composing  documents,  menus,  dialog  boxes,  and  writing  the  corresponding  scripts  (or  more  complex 
command packages, see below) is what constitutes component assembly. Technically speaking, scripts and 
command packages can also be components (this is the case with the BlackBox Component Builder), but 
since  such  components  don't  implement  objects  (i.e.,  typically  contain  no  classes),  we  still  refer  to 
"component assembly".
Developing components that contain classes which implement visual objects is an example of component 
construction. Part III of this book will demonstrate component assembly, while Part IV will concentrate on the 
construction  of  components.  For  the  sake  of  brevity,  we  call  components  which  contain  classes  that 
implement visual objects as "visual components". However, be aware that this is somewhat misleading. The 
component itself has no visual aspects, it is a software package that cannot be instantiated nor displayed - 
components are not objects.

Compound documents are very intuitive and useful.  In fact,  they have been so successful  in promoting 
component software that they have almost become synonymous with it. But there also exist many non-visual 
components such as device drivers. In the future, it can be expected that non-visual components specific to 
narrower domains will create the largest markets. This may be components for retail, health-care, financial 
services, embedded systems, and other domains.
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One  particularly  important  kind  of  non-visual  component  is  the  "command  package"  component.  The 
commands of a command package operate on documents, i.e., they interact with visual objects. A spelling 
checker is an example of a typical command package. Typically, the commands of a command package are 
represented to the user as menus or dialog boxes. In most cases it is easier to develop command packages 
than visual components, thus the majority of custom components are command packages.
Simple command packages are often referred to as "scripts". Most scripts are written by end users, rather 
than professional developers. In table 2-8, a possible taxonomy of components is given.

component types description (examples)

visual
control implements context-dependent interactive objects

(command button, check box, radio button, text field, combo box)
editor implements context-independent interactive objects

(text editor, spreadsheet, jigsaw puzzle)
container implements context-providing interactive objects, usually special editors

(HTML browser, visual designer)
viewer editor with disabled interaction features, i.e., read-only contents

(picture viewer, help-text browser, Adobe Acrobat)
wrapper special container that adds or modifies behavior of contained objects

(scroller, background-color wrapper, layer wrapper)
non-visual

command package collection of interactive commands that typically operate on visual objects
(spelling checker, compiler tool, GUI commands/guards/notifiers)

script simple command package, often for automating work-flow, written by user
(receive e-mail -> parse its header -> store it in appropriate subdirectory)

library collection of largely independent functions or classes
(math library, string library, collection/tree/bag/... classes)

service provides framework that is extensible through plug-ins
(stream input/output, document storage, DB access)

plug-in implements objects that are used by some service
(SCSI device driver, Just-In-Time compiler, file converter, DB driver)

business implements domain-specific program logic
(accounts/customers/balance sheets, process control configuration interface)

Table 2-8. Taxonomy of component types

In order to enable any type of component market, a standardized component software infrastructure (so-
called "middleware")  had to be established first.  No one likes to install  software that  is not  immediately 
useful, thus the middleware had to deliver some immediate benefits to justify the customer's investment. A 
market catalyst for the necessary middleware was needed.

Because of the immediate and compelling benefits that compound documents provide to end users, they are 
the  means  by  which  Microsoft  bootstrapped  its  component  technology  into  the  market.  Compound 
documents have become the main catalyst for the widespread market acceptance of component software 
technology. Once the technological infrastructure is ubiquitous, non-visual components can also benefit from 
it.

2.5 Component software and the Internet

Decomposing a monolithic program into components should, naturally, result in several smaller components. 

11



Similarly, these components ought to be less expensive than the monolithic program. It doesn't make sense 
to split up a word processor into a text engine, a spelling checker, a drawing component and a formula editor, 
if these components together are more expensive than the monolithic program. For this reason, it can be 
assumed that mass market standard components will be inexpensive. Of course, the smaller a market, the 
higher prices may be.
Selling a component involves overhead, e.g., for packaging and marketing. For an inexpensive component, 
the overhead may be larger than the selling price, i.e., no profit can be made. For this reason, components 
today are usually sold in packages; e.g., a dozen Visual Basic controls may be packaged and sold together. 
This is unfortunate; it would be much more appropriate to sell components individually.

This problem may be solved by the Internet. The Internet is a low-cost distribution medium for all kinds of 
digital things, why not for software components? In fact, already there are the first examples of "software 
kiosks"  on  the  Internet,  where  you  can  buy  components  and receive  them electronically.  If  successful, 
electronic distribution will enable even the smallest vendors to sell components in a cost-effective way, since 
no intermediate distributors are involved. Moreover, distribution is always world-wide, making the Internet an 
unprecedented market  accelerator.  At  the time of  this  writing,  there have already been several  software 
kiosks on the Web, e.g.:

http://java.wiwi.uni-frankfurt.de
http://www.buydirect.com
http://www.broadcast.com
http://www.componentsource.co.uk
http://www.cybout.com/cyberian.html
http://www.devdepot.com
http://www.partbank.com
http://www.pparadise.com
http://www.software.net
http://www.stream.com
http://www.unboxed.com

Table 2-9. List of software kiosks

Even with modems getting faster all the time, no one wants to transfer megabytes of data over the Internet if  
it can be avoided. Thus fatware is ill-suited for the Internet; components should be as small as possible. 
Huge applications have been accepted in the past, since disk and memory sizes have increased so much. 
But development tools that create minimal-sized "components" of over 2 MB, where 2 KB would be ample, 
are hardly tolerable anymore. The Internet is a good reason to strive for component software in the first 
place, and for small components moreover.

The first Web pages have been rather static, but Java applets are beginning to change this. Applets are 
components that are sent over the Internet to a Web browser and execute there. Therefore, making the Web 
experience more active and lively is another driving force towards component software. Component software 
benefits from the Internet as distribution medium, and the Internet benefits from component software to make 
it richer and more interactive.

Compound documents have been mentioned as the most important market catalyst for component software 
technology. This is the case because of the sheer number of personal computers in use today, which give an 
unprecedented economy of scale. But enterprise networks in large companies have been a second catalyst 
that  helped  finance  the  necessary  investments  into  middleware  that  might  be  useable  for  component 
software. In large enterprises, the main application of such technology lies in adding programming interfaces 
to old legacy applications, such that they can be connected to enterprise-wide networks in a simpler and 
more  systematic  way  than  previously  possible.  Unfortunately,  this  has  led  to  the  misconception  that 
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component  software and communication between objects that  reside on different  machines ("distributed 
objects") are one and the same [OHE96].
But many distributed object systems need to be deployed as a unit in order to work, because they are tightly 
coupled - even though the coupling occurs over a network. Their parts are not independently deployable 
components, and thus those systems are not component software systems. On the other hand, Microsoft's 
OLE is an example of true component software that doesn't involve distribution over a network.

Distributed  objects  are  just  another,  and  possibly  becoming  an  important,  application  of  component 
technology. But most components, in particular light-weight components, only interact locally.
Today, distributed objects are often hailed as the future of computing. In our opinion, the vision of distributed 
objects  is  greatly  oversold.  Distributed  objects  hide  the  most  important  characteristics  of  a  distributed 
system, in particular a tremendous difference in speed (latency caused by network round-trips) and in error 
probability  (every  method  call  may  fail  due  to  a  network  problem).  As  a  result,  complete  local/remote 
transparency,  probably the most attractive aspect of  distributed objects,  cannot be sustained in practice. 
Replacing complicated network interfacing code, typically based on the widely used "sockets" API, is the 
major  benefit  of  using  distributed  objects  today.  Less  humble  benefits,  such  as  complete  location 
transparency, or unlimited scalability through decentralization of resources, remains to be proven in practice.
It  is  clear,  however,  that  large  enterprises  can  benefit  from  any  technology  that  makes  integration  of 
applications a simpler and more systematic process, and that they have the money to create an attractive 
market. In fact, the most interesting future component markets will probably be for business components on 
the server side, rather than on the client (PC) side where the margins are much lower and the requirements 
more generic. Whether networked business components will  be achieved with distributed objects or with 
other middleware technologies remains to be seen. For example, messaging middleware may become more 
popular again, because the messaging model is simply more adequate, easier to use (e.g., simpler error 
handling), and more flexible (e.g., multicasts instead of mere point-to-point communication).

The  Internet,  with  its  World-Wide  Web,  combines  aspects  of  both  compound  document  and  network 
architectures. Thus it is a combined market catalyst that consequently has become the third major driving 
force for the adoption of component software.

Today, some possible future effects of the Internet can only be guessed. The Internet not only allows to 
distribute low-cost software, it also allows free distribution of software. Free software can make sense if the 
development expenses can be recouped by selling special services for this software, or by introducing some 
pay-per-use scheme. The former scheme basically treats software as a marketing vehicle for services. The 
latter scheme requires a trustworthy accounting mechanism. Obviously, only features far to the left side of 
the spectrum of required features can be expected from free software; the other features are usually of too 
little interest to the companies or individuals that develop free software.

3 Requirements for Component Software
The idea of component software is so obvious that we may wonder why it didn't catch on earlier. To answer 
this question, and to give some first technical insight on what component software is, we will first take a look 
at the (pre)history of component software. We will see that an important reason for the late appearance of 
general component software was the lack of an appropriate and standardized infrastructure.

3.1 Operating systems

In the early days of  computers,  an application program had to take control  of  the entire computer.  The 
application  could  freely  use  all  hardware resources,  there  was  no  other  software around  on  the  same 
machine at the same time. However, this also meant that the program had to implement from scratch even 
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basic services such as input and output routines.
Later, generally useful services were packed together into a special program that was always available, the 
so-called  operating  system.  An  application  program  now  didn't  have  complete  control  over  the  entire 
machine anymore,  it  had to  cooperate with the operating system and use its services where available. 
However, this loss of control was more than compensated by the increased productivity that resulted from 
reuse of the operating system services.
An operating system can be regarded as a software component that is reused by all applications written for 
it. Seen the other way around, an application can be regarded as a software component that dynamically 
extends  its  operating  system's  functionality.  The  separation  of  software  into  operating  systems  and 
application programs can be seen as an extremely successful first example of component software.

Decades  ago,  computers  were  very  expensive  devices.  Thus  it  was  hardly  acceptable  that  one  single 
program should block the entire computer when it runs. In particular not for interactive applications, where 
most of the time, the program would simply wait for the connected user to type something on a terminal. 
Thus  time-sharing  was  invented,  i.e.,  the  operating  system  allowed  to  execute  several  applications 
simultaneously, by giving each application a short time-slice before passing control to the next one. Since 
computers had become fast enough, users wouldn't  notice that their computer only worked part-time for 
every one of them.
This was a big step forward in giving more people access to computers. But it also created problems. A 
program should not be able to interfere with other running programs. In particular, it should never be allowed 
to change the state of another program, i.e., to overwrite memory belonging to another program. Of course, a 
well-behaved program wouldn't do that. But how about incorrect programs? Even then, it was clear that few 
programs are free of errors and thereby immune against vicious behavior. Thus safety became an important 
concern.
The  problem  was  solved  by  adding  hardware  protection  mechanisms.  Hardware  protection  could  be 
combined in an elegant way with support for more flexible memory management, so-called virtual memory. 
Basically, every program is presented with the illusion to have the computer's entire memory for itself, and 
this memory is separate from the memory that other programs use. These separate address spaces prevent 
any direct interference of application programs. A program could directly interact only with the operating 
system, via special kernel calls. Modern microprocessors have special support for such kernel calls.

Unfortunately,  hardware protection works all  too well.  It  prevents interference of  applications,  but  it  also 
prevents  integration.  This  is  one reason why component  software  could  not  evolve on this  basis.  Tight 
integration is necessary for component software to work! A rating algorithm must have direct access to the 
balance  sheet  it  is  rating.  Over  time,  operating  systems  added  features  to  support  some  degree  of 
application integration, such as pipes or shared libraries. However, these mechanisms have been far too 
limited and inefficient. They didn't provide an appropriate basis for componentizing operating systems and 
applications, and thus failed to stop the fatware trend.
The one area in which the old operating systems  have been successful concerning component reuse is 
device drivers. Device drivers have a venerable tradition of isolating closely cooperating components, i.e., 
the device drivers, the applications and the operating system, from each other's details. This is done in a 
manner that is efficient whilst still allowing a measure of independent evolution of all components involved.

In order to write an application, a developer needs to know what services the operating system provides. He 
doesn't necessarily need or want to know how these services are implemented. For this reason, abstract 
descriptions of operating system interfaces have been created. In order to enable portability of applications, 
and thus to open the greatest possible market for them, the interface of an operating system had to be the 
same independent of implementation or hardware variations. The MS DOS operating system has shown how 
successful strict adherence to a standard can be, while Unix has shown how fatal slight variations of the 
same theme can become. Component users want shrink-wrapped software that works in a plug-and-play 
manner, rather than bother with a variety of incompatible binary formats.
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To write an application, it isn't sufficient to know what functions an operating system provides. In order to 
create actual code, the developer - or at least the compiler writer - needs to know down to the last bit and 
instruction how a call must be made and how the parameters must be passed; i.e., there must be a binary 
standard for the calling conventions.  Over time, different  calling conventions have been tried out.  Some 
operating system even require the use of several different calling conventions, e.g., the Mac OS uses half a 
dozen  different  conventions.  However,  most  calling  conventions  have  proved  too  limited  in  scope.  For 
example, if a microprocessor only supports a few thousand different kernel calls, in practice these calls can 
only be used for calling the operating system from an application - and even the operating system may 
outgrow the processor limitations. Only the more modern calling conventions can be generalized to calls 
between an arbitrary number  of  independently developed components,  including (but  not  limited to)  the 
operating system.

An operating system must be able to load and start applications dynamically at run-time. This requires a 
standard file format for the code of an application, so that the operating system's loader can perform its work. 
Like the calling conventions, these file formats (e.g., the Windows EXE file format) have turned out to be too 
limiting,  and new formats  more amenable to component software were defined (e.g.,  the Windows DLL 
format).
To summarize the most important points concerning component software that can be learned from operating 
systems, the following list of requirements for component software can be derived:

• a standard that enables dynamic loading of components (dynamic link libraries, calling conventions)
• a standard programming interface (e.g., the Unix kernel interface)
• a protection mechanism which prevents a component from illegally modifying the state of other components
•  a  way  to  share  data  between  components  without  copying them back  and forth,  and without  explicit 
conversions to or from linear byte streams

We will meet these points again and discuss them in more detail in the following sections.

3.2 Interfaces as contracts

A component is a black box that interacts with its environment only via its interface. The interface defines a 
standard for what component vendors have to provide and what component users can expect. If the interface 
is published, many vendors and users can take advantage of it, and thus a market can develop around it.
We can look at the interface of a component at the binary level, the domain-specific application level, and 
sometimes at the user interface level. But before looking at existing standards for these various interface 
levels, we should take a closer look at what an interface is.

An interface defines what a component vendor must provide, and what a customer can expect to get. For 
example, a mathematics component may implement an interface that defines procedures for calculating the 
sine and cosine functions:

DEFINITION Math;

PROCEDURE Sin (x: REAL): REAL; (* return the sine of x *)

PROCEDURE Cos (x: REAL): REAL; (* return the cosine of x *)

END Math.

As Bertrand Meyer [Meyer89] has observed, an interface can be compared to a contract. In this section, we 
will demonstrate that many aspects of genuine contracts can directly be applied to component interfaces.
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Contracts involve at least two parties, e.g., a vendor who promises to provide some goods, and a customer 
who promises to consume the goods in a particular way. For example, an author writes a book, and a book 
publisher publishes this book. Both author and publisher are bound by a contract.
Sometimes  a  contract  comes  from  a  third  party.  For  example,  many  professional  organizations  offer 
standardized contracts for their profession.

There are good contracts and bad contracts. A good contract should be clear, complete, and concise. A bad 
contract is ambiguous, misses important points, or lays down irrelevant details. All these deficiencies lead to 
one party making false assumptions about the behavior of the other:
If a point in a contract is ambiguous, each party must supply its own interpretation of what its and the other 
one's duties are. This easily leads to incompatible assumptions, and then to conflict.
If something important is missing, tacit assumptions may pop up. If such an assumption remains valid for 
some  time,  it  may  turn  into  an  unwritten  law,  i.e.,  into  an  implicit  refinement  of  the  contract.  But  this 
refinement is fragile, since the assumptions may suddenly not hold anymore, when the other party sees 
reasons to do things in a different way in the future. This leads to a power struggle or cancellation of the 
contract.
If irrelevant details are fixed in a contract, an unnecessary constraint is put on one or both parties. There 
comes the time when one party wants to change the contract in order to be more flexible. This can lead to 
expensive and possibly futile attempts at renegotiation. Or instead of negotiating, a contractor may simply 
violate the contract. If this leads to no complaints, the violation also may turn into a kind of established right. 
But power struggles, cancellation of the contract, or litigation are likely.
In summary, contracts that are ambiguous or underspecified are fragile, while overspecified contracts are too 
constraining. Both are likely to lead to conflicts. Interestingly, the conflicts often break out when the contract 
needs to be amended for some reason. This is a very important effect, as we will see later. The art lies in 
defining contracts which are neither under- nor overspecified.

Contracts have other interesting properties. For example, if someone has to provide a certain amount of 
valuable goods, the receiver usually won't complain if he receives a larger amount. Vice versa, if the receiver 
for some time requires a smaller amount than agreed upon, the provider usually won't mind either. This 
means that in some cases, contract violations are harmless. Another interesting point is that contracts often 
have an expiration date, i.e., they are only valid for some predetermined period of time.

What  does  this  all  have  to  do  with  interfaces  between  components?  The  parties  bound  by  a  contract 
correspond to components interacting through some interface. Bad contracts are unclear, incomplete, or 
overloaded.
An unclear contract corresponds to an unclear interface specification. Unfortunately, this is rather the rule 
than the exception. While the syntax of an interface can be defined easily,  clear semantics are elusive. 
Usually  there  is  just  an  informal  text  describing  what  the  interface  means.  Formal  and  semi-formal 
specification methods can help to make interfaces less ambiguous. For example, a procedure may specify 
preconditions and postconditions, i.e., which conditions must hold on the inputs of the procedure when it is 
called, and which conditions on the outputs must be established by the called procedure. This goes a long 
way towards making interfaces less ambiguous, although it still doesn't address all important aspects, such 
as performance.
For example, the following formal specification

PROCEDURE Sum (x, y: INTEGER; OUT z: INTEGER)
Precondition: (x >= 0) & (y >= 0)
Postcondition: z = x + y

indicates in the precondition that the input parameters x and y must not be negative. In the postcondition, it is 
specified that the result parameter z is the sum of x and y.
This is an interface (contract) between the implementor of the procedure and the caller of the procedure. The 
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implementor is free to accept weaker preconditions, e.g., it may also accept negative values for x and y. 
While this can never be wrong, no one may rely on the assumption that negative values for x or y are 
handled in a particular way. In a similar vein, an implementor may support stronger postconditions, i.e., it 
may deliver more than what is required.
An example of a legal implementation of the above specification is the following:

PROCEDURE MySum (x, y: INTEGER; OUT z: INTEGER);
BEGIN

z := ABS(x) + ABS(y)
END MySum;

which  is  a  perfectly  correct  implementation  of  the  interface  specified  above.  It  is  very  typical  that  an 
implementation is much more specific than its interface requires: the above example implements a weaker 
precondition (negative values are also permitted) and a stronger postcondition (sum of absolute values is 
computed) than required by the specification.

An interface which defines too many inessential details will cause programmers to use them and to rely on 
their availability. This makes it impossible to change these details later, even though it may become strongly 
desirable to do so. Giving too many details is especially enticing if there already exists some complex but 
undocumented code, which is to be turned into a component. Then the easy thing to do is to publish the 
source  code  and  not  bother  with  the  definition  of  a  less  constrained  interface.  As  a  result,  the  entire 
implementation becomes the interface and may never again be modified, since this may break the client 
code, i.e., the other party.
Using a complete implementation as its  own specification is  also a problem of  complexity:  it  is  hard to 
analyze tens of thousands of lines of code to determine how a piece of software behaves. Such a complex 
"specification" is similar to a contract that contains a book full of small print.

Even if a software component has a minimal and well-defined interface and is not available in source code, 
an inventive programmer will find out by trial and error how the component behaves under circumstances 
that  are not  mentioned in the interface.  Basically,  such a programmer derives his own ad-hoc interface 
specification that is more specific than the published interface, i.e., the contract. If he takes advantage of this 
more useful but fragile extended interface, then his code may break when the component is replaced by a 
new version whose internal workings have changed. We all know this effect from applications that suddenly 
don't work correctly anymore after a new operating system release is installed. These applications relied on 
assumptions that were not written in the contract and thus not guaranteed. Of course, if a sufficient number 
of important applications rely on such undocumented features, the operating system vendor may be forced 
not to change them in the future anyway. Thereby the vendor would, grudgingly, accept the established rights 
of the marketplace.
The problem of ad-hoc specifications derived by trial and error, and the fragility caused by them, cannot be 
solved completely. But, as we will see later, there are popular programming language constructs that make it 
much more likely to fall into this trap. Consequently, they should be avoided in component interfaces.

Can interface contracts be enforced? To some degree, such an enforcement is possible.  Some contract 
violations can be detected at compile time by the compiler, other violations can be detected later at run-time, 
by using suitable hardware and software protection mechanisms.
At  the  most  basic  level,  every  component  is  required  to  interact  with  other  components  through  their 
interfaces exclusively; this is a kind of universal contract, i.e., a law. For example, directly overwriting another 
component's memory would be a gross violation of the law. In a closed world, e.g., in an isolated monolithic 
application,  this  problem can  be solved easily.  But  in  an  open  component  software world,  interference 
between components is a fundamentally more critical issue. If the hardware or software infrastructure of a 
computer can completely prevent the violation of interface contracts and laws, the reliability of the whole 
system will improve, by limiting the damage that a  component can possibly create ("bug containment"). 
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There  exist  hardware  protection  facilities  and  in  particular  modern  programming  language  designs  that 
provide this kind of safety.

When a component is sold worldwide, the vendor typically doesn't know all its customers anymore. This 
means that it has a contract with unknown parties. Since contracts can be changed only if all parties agree, it  
follows that an interface of such a component may never again be modified. Except in the harmless ways 
described  earlier,  i.e.,  by  providing  more,  or  by  requiring  less  than  what  was  specified  in  the  original 
interface.

In principle, it would only be possible to withdraw an interface, i.e., to cancel a contract, if a timeout were 
specified  in  the interface.  This  is  unusual  today.  But  since the market  is  changing so rapidly  and thus 
software becomes obsolete so quickly, interface timeouts don't seem so essential today. But who knows; this 
may change in the future.

Finally, if a vendor and a customer agree on using a standard contract from a professional organization in 
their field, this is similar to a component constructor and a component assember who agree on the same 
standardized component interface that  was defined by some third-party framework designer.  Framework 
design will be discussed in more detail in 4.2 and in Part II.

We have seen that contracts give a deep insight into the nature of component interfaces. By now, we should 
have  become  sensitive  to  the  problem  of  good  interface  specifications.  Unclear  interfaces  lead  to 
incompatibilities, underspecified interfaces lead to the invention of ad-hoc interfaces by trial and error, and 
overspecified interfaces provoke overly constrained or outright incorrect implementations. Underspecification 
and overspecification are both latent sources of conflict: when a component is replaced by a new version, 
dependent components may suddenly break.

3.3 Object models

An object model defines the necessary rules to make components compatible on a binary level, such that 
components  can  interact  on  a  particular  machine  even if  they have been  developed  independently.  To 
achieve this goal, an object model needs to standardize the following aspects:

1) an interface definition language for describing interfaces
2) a mechanism for inquiring about interfaces and their attributes, i.e., an "interface repository"
3) a code file format for storing code that can be loaded at run-time, i.e., a format for dynamic link 

libraries
4)  a  mechanism  for  locating  suitable  code  files  for  a  given  interface,  i.e.,  an  "implementation 

repository"
5) a mechanism for loading code files into memory, i.e., a linking loader
6) a mechanism for version checking of loaded code
7) a mechanism for creating instances of a loaded class, i.e., for the allocation of objects
8) calling conventions for methods of an object
9) a mechanism for navigating between polymorphic types of an object
10) a mechanism for reclaiming unused memory, i.e., for the deallocation of objects
11) message formats, if distributed objects are supported

These points will be discussed one by one in the following paragraphs.

1) A component may use the services of another component. To achieve this, a developer only needs to 
know the used component's interface. Possibly, there does not even exist an actual implementation for this 
interface yet. An interface needs to be described in some way. A textual description of an interface is written 
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in an interface description language (IDL). Ideally, this is just a subset of the programming language that the 
developer uses. However, a general object model is language-independent, and of course an IDL can only 
be a genuine subset of very similar programming languages. Other programming languages will exhibit a 
more  or  less  severe degree  of  "impedance  mismatch",  i.e.,  a  translation  is  required  between interface 
constructs. For example, an IDL may define unsigned integers, while languages like Java or Component 
Pascal only support signed integers. This requires a mapping, e.g., to auxiliary data types defined in a library. 
This approach may become extremely invonvenient.

2) An IDL description provides information about an object's interface to the developer. If possible, a compiler 
should use the same information to check whether the interface is used correctly. For this purpose, there 
often exists a binary format for interface descriptions in addition to the textual IDL format.  The available 
collection of such binary descriptions is called the interface repository. It may just consist of a collection of 
so-called symbol files, or it may be stored in some kind of database.

3) When a component is compiled, the compiler needs to create a file containing the generated code. The 
format of such a file must be suitable for run-time loading, i.e., it must be a dynamic link library. Often, the 
operating system's DLL format is used. For language-specific object models, a more efficient light-weight 
DLL format can be used instead.

4,  5)  At  run-time,  when a  component  for  the  first  time needs  the  services  of  another  component,  this 
component is loaded. The loader first locates the code file of the component. Locating the code file may be 
straight-forward, e.g., the name of a component may directly determine the file system path to its code file. 
Alternatively, a configuration database may be consulted to determine the correct location of a suitable code 
file. This indirect approach is more flexible, but is more demanding in terms of system administration. The 
collection of code files or the corresponding database is called an implementation repository.
It has been proposed to develop even more flexible ways to search a suitable component implementation for 
a given interface, using additional search criteria. Whether these so-called trader services will succeed in 
practice remains to be seen.

6) When the loader has successfully located a component and loaded its code into memory, it can check 
whether the loaded code really implements the interface that was requested, and whether the versions of the 
loaded component and its client are compatible. This check is of fundamental importance, because it is not 
acceptable that a version conflict leads to a crash some time later, leaving the user without clue as to the 
source of the problem. Some object models provide no adequate versioning mechanism and shift the burden 
of consistency checking partially or completely to the client component.

7) Once a component's code has been loaded and checked, instances of its classes can be created. For this 
purpose, the object model needs to define an allocation mechanism for objects. Some object models suggest 
an indirect approach to allocation, in order to gain additional flexibility. In particular, an object may be created 
by another object, a so-called factory object. A factory object may decide on its own how to allocate or how to 
initialize objects.

8) When an object thus finally has been created and made accessible to others, its methods can be called. A 
method call  is  a procedure call  performed indirectly  via an object,  so that  different  objects  can lead to 
different code being called. Typically, an object contains a pointer to a table of procedure pointers. Each 
element of the table corresponds to one method of the object. A method call then simply becomes an indirect 
procedure call  via the object's method table.  Usually the calling conventions of the underlying operating 
system are used for these procedure calls.
Fortunately,  this  has the effect  that  an object  model  can be used by every programming language that 
supports  operating  system  calling  conventions,  plus  references  to  objects  or  references  to  functions 
("procedure variables") - i.e., by practically every modern language, whether object-oriented or not.
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Figure 3-1. Possible memory layout of an object

9) Polymorphism is one of the fundamental properties of any object-oriented or component-oriented system. 
In a program, some interface supported by an object may be known at compile-time. This is called its static 
type. But an object may reveal additional capabilities, i.e., an extended interface, at run-time. Depending on 
the object's dynamic type, these capabilities may differ. This is called polymorphism ("many shapes"). An 
object model needs to provide a means to gain access to these optional capabilities if and only if they are 
available. An object-oriented programming language defines language constructs such as type extension 
(also known as subtyping or interface inheritance), type tests, or type guards (i.e., safe type casts) for this 
purpose. The object model must provide similar functionality. Without polymorphism, a system would not be 
extensible.

10) When an object is no longer used, i.e., when it is no longer being referenced from the outside, it must be 
deallocated to free the memory that it occupies. In a component world, the objects that a component makes 
accessible to the outside may become referenced by any number of other objects that it doesn't even know 
about. There must be rules that establish who must deallocate a given object, and when. For example, the 
object that releases the last remaining reference to another object could deallocate it. To determine whether 
an object owns the last reference to another one, a mechanism is needed that helps tracking references, 
e.g., a reference count in each object which counts the number of currently existing references to it. When 
the count goes down to zero, the object's memory can be freed. Correct usage by all components is critical 
for such rules to work. In a closed application, incorrect memory management is one of the most expensive 
sources of errors; but at least you know who to blame if the application crashes. In an open component 
world,  one malfunctioning component can cause others to crash,  which makes it  difficult  to pinpoint  the 
culpable vendor. Thus memory management in a component software environment is a fundamentally more 
critical issue than for monolithic software. Ideally, the rules and mechanisms defined by an object model 
should be sufficiently simple, complete and clear that they can be automated; i.e., it should be possible to 
relieve the  developer  from manual  deallocation,  by providing an automatic  garbage collector.  Automatic 
garbage collection in an open world is no luxury, it is a necessity.

11) An object model that supports distributed objects must define a message format, which describes the 
byte streams produced by a remote method call. The caller of a method is called the client, the callee is 
called the server. In the most general scenario, the server object is implemented on another machine than 
the client. From a developer's perspective, the client can directly call a server object's methods. In reality, the 
client only interacts with a proxy object, which is a local representation of the true object implementation on 
the remote server machine. In most implementations, a proxy, as well as its server-side counterpart, can be 
generated automatically out of the object's interface.
A remote method call causes the proxy to send a request message with the input parameters to the server 
(see Figure 3-2). On the server, the genuine method call is executed. Its results are sent back in a response 
message. Both request and response messages are linear byte streams; they represent the values of the 
method's  input  (request)  and output  (response)  parameters.  Using a distributed object  model  to replace 
traditional means of communication can be attractive under certain circumstances. Here it is interesting to 
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note that transparent distribution of objects fundamentally requires the complete separation of interface from 
implementation: a client object must not be aware whether it is calling a genuine object, or only its proxy. The 
interface is the same in both cases, but the implementation is radically different.

Figure 3-2. Remote method call

Now we have seen all major ingredients of an object model. An object model makes it possible to replace 
one  component  by  another  one,  e.g.,  by  a  new  version,  without  forcing  a  recompilation  of  any  other 
component. This is called release-to-release binary compatibility. For example, if you buy a new release of 
your favorite word processor, you don't want to be forced to buy new versions of your spelling checker and of 
all other components that operate on texts. The problem solved by release-to-release binary compatibility is 
also known as syntactic fragile base class problem. 
Using a new version of a component must not lead to a system crash just because, e.g., its method table 
entries have been rearranged. All aspects of an object model must fit together in a way that makes release-
to-release binary compatibility possible. Solving this problem is a prerequisite for the asynchronous evolution 
of components, which is inevitable in a large market.
After this overview over what an object model is, we will take a look at some of the more important industry 
standards for object models and how they address the issues discussed above.

3.4 Standards for object models

IBM's System Object Model (SOM) has been introduced in OS/2 mainly as a means to make the operating 
system extensible by new components; not so much as a means to split applications into components. Over 
time, SOM has been extended to conform to the CORBA (Common Object Request Broker Architecture) 
standard. CORBA is a standard of the Object Management Group (OMG, http://www.omg.org), a consortium 
consisting of hundreds of companies. The OMG attempts to define various standards for distributed objects. 
CORBA standardizes the general architecture of an object model, while leaving open all machine-specific 
("binary") aspects. Compatibility is only required in two areas: for source code of applications, and for the 
message formats on a network. On the binary level (e.g., calling conventions), CORBA products are free to 
use completely different approaches. Theoretically, this approach will  still  allow object models of different 
vendors to work together.
CORBA provides a simple API that is available for all objects. Additionally, server objects have access to an 
extension of this API, to the services of a so-called  object adapter. In principle, there may exist different 
object  adapters;  each  one optimized  for  particular  kinds of  server  objects.  The mandatory  basic  object 
adapter,  which is the only one widely available,  is optimized to manage relatively few, but heavy-weight 
objects. This can be explained with the background of most CORBA customers; namely large enterprises 
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that are interested in wrapping object interfaces around existing monolithic legacy applications. For most 
server  object  implementations,  it  is  necessary to access product-specific  extensions of  the basic object 
adapter's interface. Moreover, it has become obvious that to achieve more convenience, language-specific 
object adapters would be useful. Unfortunately, object adapter implementations are not portable, because 
they have to be implemented in terms of a product's private, non-standard APIs.
CORBA defines  an  interface  definition  language  (IDL)  in  which  the  syntactic  interface  of  an  object  is 
specified,  independent of  the programming language used for its implementation.  Functionally,  the SOM 
extension of the CORBA IDL is a mixture of C++ and Smalltalk features. It supports multiple inheritance and 
metaclasses, but leaves out templates and garbage collection. Multiple inheritance allows to combine several 
existing  interfaces  into  a  new  one.  In  contrast  to  CORBA,  which  does  not  support  implementation 
inheritance, SOM supports (multiple) implementation inheritance. In contrast to CORBA, SOM also supports 
normal pointers instead of reference objects only. Typical C++ sources that use or implement SOM objects 
rely on SOM-specific macros that are not common in other CORBA implementations, and thus limit their 
portability.
SOM allows to extend a class in a new release, e.g., by adding new methods, without rendering existing 
clients of the old class incompatible, i.e., it solves the syntactic fragile base class problem.
CORBA defines interfaces for interface and implementation repositories. CORBA is self-describing, i.e., its 
own interfaces can be obtained via the interface repository. These features are supported by SOM.
SOM uses the calling conventions and DLL formats of the operating system on which it is implemented. A 
SOM method call is a procedure call with two additional parameters, one for the self-parameter (the object) 
and one for the environment pointer (used e.g., for exception handling).
A SOM object provides version numbers (major and minor), such that a client can check whether it accesses 
a legal version of an object (unfortunately, checking is usually done at class load time, which is not sufficient 
- an object may later be passed unchecked to some other object requiring a different version). It is possible 
to test at run-time whether an object is an instance of a particular class or one of its subclasses.
Distributed SOM (DSOM) is a CORBA-compliant extension of SOM that adds support for distributed objects.
Like CORBA in general, SOM makes no provisions for the systematic reclamation of free memory, i.e., it is 
not possible to develop a garbage collector that automatically frees all unused memory. Apple's Mac SOM 
implementation differs in this  respect  and provides reference counting methods in the SOMObject  base 
class. Unfortunately,  this is a non-standard programming model that cannot be relied upon when writing 
cross-platform software.  For  example,  OpenDoc,  which  is  based  on  SOM,  provides  its  own redundant 
reference counting scheme for some of its objects. On the positive side, Mac SOM is considerably more 
efficient than IBM SOM and does not exhibit the memory leak problems of the latter.
SOM is available on several platforms besides OS/2, e.g., for AIX, OS/400 and Mac OS. SOM, Orbix (Iona), 
NEO (Sun)  and  other  CORBA implementations  implement  different  subsets  of  the  CORBA services,  a 
collection of  CORBA libraries ranging from support  for  persistent  objects and generic data structures to 
transaction and security services. However, these standardized libraries are only partially implemented and 
most  vendors  offer  competing  proprietary  libraries  which  are  more  agressively  marketed  and  better 
supported.
DSOM was set to become the first widely available CORBA implementation, because of the support by IBM 
(OS/2) and Apple (Mac OS), and because it is the basis of OpenDoc. It didn't happen. Now the hope of 
CORBA supporters lies with VisiBroker of Visigenic. This product is licensed by Netscape, Oracle, Novell, 
Borland,  and  Sybase.  It  is  the  second,  and  probably  the  last,  opportunity  for  a  mass-market  CORBA 
implementation, and thus for component software based on CORBA.

Microsoft's Component Object Model (COM) was designed as a means to integrate applications, and will be 
the basis for  most  new operating system services of  Windows.  Microsoft's  interface definition language 
(MIDL) for  COM is  an extension of  the older  DCE (Distributed Computing Environment)  IDL.  DCE is  a 
standard for remote procedure calls.
A component may provide a so-called type library, which is its interface repository. The Windows registry is 
used as a simple implementation repository. The Windows calling conventions are used for COM. A COM 
code file may either be a Windows DLL, for light-weight components that are loaded into the same address 
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space as its client; or as Windows EXE files, for heavy-weight components that have their own address 
spaces (typically normal Windows applications).
The COM model differs from CORBA in that an object may provide not only one, but an arbitrary number of 
interfaces - to each of which there can exist  arbitrary numbers of  external references. A client only has 
access to an object's interfaces. Thus it leaves completely open how an object is implemented, whether as 
one programming language object, or as a composed data structure. In the simplest case, a COM object 
provides one interface and is implemented as one contiguous memory block.  This situation is shown in 
Figure 3-3. Note that COM is a binary standard, meaning that the memory layout of an interface, the calling 
conventions, and the code file formats are completely determined by COM (actually, the code file format is 
not determined by COM itself, but by Windows and the chosen processor's instruction set format).

Figure 3-3. Layout of a simple COM object

More typical is the situation illustrated in Figure 3-4: the object consists of a data structure containing many 
internal (light-weight, non-COM) objects and a few interfaces. These interfaces can be referenced from other 
COM objects.
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Figure 3-4. A COM object may provide several immutable interfaces, and typically consists of many internal 
objects

Every COM interface provides the method QueryInterface. It allows to navigate between COM interfaces and 
is  the  way  COM achieves  polymorphism.  In  the  diagram above,  there  exist  pointer  paths  between  all 
provided interfaces; they are necessary to implement QueryInterface. QueryInterface also acts as a version 
checking  mechanism:  if  it  returns  a  particular  interface,  its  corresponding  functionality  is  available.  A 
syntactically or semantically different version would have to be provided via another interface. To distinguish 
interfaces, every interface gets a globally unique identifier (GUID), i.e., a 128-bit number that is unique in 
space and time.
COM objects are allocated indirectly via factory objects. A COM object that is implemented as a DLL, or as 
an EXE that registers itself upon startup, is called an ActiveX object.
COM addresses the syntactic fragile base class problem by making interfaces immutable, i.e., once officially 
introduced, an interface may never be changed again. This also implies that the interface's binary layout (the 
ordering of methods in its method table) will never change again. If it is necessary to extend an interface, the 
new functionality must be provided as a new, additional interface. If the new interface is a strict superset of 
the old one, it can be regarded as a subtype. For this purpose, COM supports (single) interface inheritance in 
its IDL and type libraries.
The earlier discussion of interfaces as contracts helps to explain why a COM interface is immutable: once it 
is widely published, an interface cannot be changed anymore without unilaterally breaking the contract that it 
represents.
Unlike the usual  version numbering  schemes,  the COM scheme of  immutable  and uniquely  identifiable 
interfaces makes it possible for several independent parties to create new versions of an interface, without 
risking to create version number conflicts. Furthermore, it simplifies a migration from old software to new 
software; by allowing to support old and new interfaces at the same time during the transition period.
Concerning memory management, COM uses reference counting: every COM interface contains, in addition 
to the QueryInterface method, the methods AddRef and Release. AddRef must increment a reference count, 
while Release decrements the reference count. When the reference count goes from one to zero, the last 
external reference vanishes, and the interface can deallocate itself, and possibly other data of its object if it is 
the only existing interface to it.
Distributed COM (DCOM) is an extension of COM that adds support for distributed objects, using a simplified 
implementation of DCE as its basis. DCOM treats client and server symmetrically in that a client doesn't 
know whether it calls a client-side stub (proxy) or the real server, and a server doesn't know whether it is 
called by a server-side stub or a real client.
COM has also been ported to other platforms than Windows, e.g., to Mac OS and several flavours of Unix 
[COM].  COM started  as  a  proprietary  standard,  but  later  Microsoft  passed  control  to  the  Open  Group 
standardization organization.

Like CORBA, but in contrast to SOM, COM does not support implementation inheritance. This decision has a 
subtle but important reason. Like an ambiguous or underspecified contract, an inheritance interface forces 
programmers to rely on assumptions, which may not hold anymore for a new release of the base class. This 
is called the semantic fragile base class problem. Implementation inheritance can only be fully controlled if 
the base class' source code is available, i.e., if the implementation is used as its own interface. But this is 
similar to an overspecified contract with pages of small print, in that it prevents later improvements of the 
base class implementation.
Microsoft correctly argues that implementation inheritance doesn't pose problems within a component, which 
is a white box from its implementor's point of view, but that it should not be used across components. Using 
implementation inheritance across components would require strict rules that help avoid the semantic base 
class  problem.  Unfortunately,  these  rules  are  still  a  research  topic  [Szyperski97].  Consequently,  class 
libraries for component software, e.g., the SOM OpenDoc classes, avoid implementation inheritance even if 
their object models support it. Interface inheritance, also called subtyping, is not affected by these problems 
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since it has nothing to do with implementation aspects. This topic, and the terms involved, will be discussed 
in more detail in section 4.1.
If you hear someone from IBM complaining that SOM has solved the fragile base class problem long before 
there was COM, this person refers to the syntactic fragile base class problem, i.e., to release-to-release 
binary compatibility. On the other hand, if you hear someone from Microsoft talking about the fragile base 
class problem, this person refers to the semantic fragile base class problem. This kind of misunderstanding 
is so stereotypical it is almost funny.

SOM and COM are examples of language-independent object models. An object model is always part of the 
run-time  environment;  but  it  may  be  designed  to  support  one  language  particularly  well.  This  leads  to 
language-specific object models, e.g., for Java. Language-specific object models have several advantages; 
in particular, their IDLs can be pure subsets of the language, which is the most natural and convenient way to 
develop software.

Sun Microsystems has defined an object model for its Java Virtual Machine (JVM). Java was designed to 
support components downloaded from the Internet. Since it is impossible to reliably judge the quality of most 
software on the Internet,  safety against  malfunctioning or even hostile components (viruses!)  is a prime 
concern.  For  this  reason,  Java  is  a  typesafe  language,  and  adherence  to  its  safety  rules  is  not  only 
guaranteed by the compiler,  but also by the JVM class loader.  For example,  it  is impossible to perform 
unchecked type casts in Java code. This rules out the use of unsafe languages such as C, C++ and even 
original Pascal. These languages cannot be compiled into JVM code (otherwise there would have been no 
fundamental reason to switch from C++ to Java in the first place). In contrast, JVM compilers for Smalltalk, 
Eiffel, Lisp, Component Pascal, or a garbage-collected version of Ada are feasible.
Since  dangling  pointers  would  make  Java  unsafe,  the  JVM  requires  a  garbage  collector.  The  precise 
mechanism to be used is left open to the implementation.
Java code is compiled into Java byte code, which can be regarded as the instruction set of a virtual Java 
processor. The JVM either interprets the byte codes or it precompiles them into native code at load- or run-
time, using a so-called Just-In-Time compiler (JIT). Class files are completely machine-independent, so that 
unlike typical SOM or COM components, pure JVM code is machine-independent. Each class is compiled 
into its own class file. Usually the file system is used as a simple interface and implementation repository, in 
the form of a collection of class files.
Java defines a concrete code file format, but leaves open the main memory representation of a program. 
This is just the opposite of COM: COM is not so concerned with the code file format,  but  predefines a 
concrete memory representation of an object's interface and its method table. CORBA leaves abstract both 
disk and memory representation.
Version checking of Java code is done at run-time. The existence of a method is checked upon its first call. 
This is a questionable approach, because a component may be loaded and work correctly for a while, but 
suddenly - of course when you can least afford it - an unexpected exception occurs.
(A similar problem can arise when you obtain a COM interface via QueryInterface, but one of its methods 
returns an error code meaning that it isn't implemented. For example, we have not seen any OLE container 
yet that implements the IOLEContainer.EnumObjects method for the iteration over a container's embedded 
views.)
Java  distinguishes  interfaces  from  classes.  Interfaces  can  be  related  by  multiple  interface  inheritance 
(subtyping).  A class is an implementation of  one or several interfaces;  classes can be related by singe 
implementation inheritance (subclassing). Checked type casts allow to navigate between different interfaces 
supported by an object. Semantically, this is equivalent to the mechanisms supported by CORBA and COM.
The distinction between interfaces and classes would lend itself to minimizing the semantic fragile base class 
problem: if subclassing is used only within components, and interfaces are used for interface inheritance 
within  and  across  components,  then  the  semantic  fragile  base  class  problem  is  largely  avoided. 
Unfortunately, Java library designers don't seem to follow any clear guidelines on when to use interfaces and 
when to use classes.
For  a  distributed  implementation  of  Java  objects,  there  exists  Java  RMI  (Remote  Method  Invocation). 
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Alternatively, distribution can be achieved via CORBA or COM, requiring language mappings between these 
object  models and Java. Language mappings define,  e.g.,  how unsigned CORBA or COM integers  are 
mapped to signed Java integers (Java does not support unsigned integers in the language).

Compatibility and safety on a binary level are the most important areas where JVM differs from SOM and 
COM. Safety has many aspects, the most fundamental being memory integrity. About half of all programming 
errors  are  in  this  domain:  illegally  overwriting memory,  not  freeing  unused  memory (memory  leaks),  or 
prematurely freeing memory that is still used (dangling pointers). CORBA and SOM do not address this basic 
issue at all, which is a monumental failure. Without a memory management standard at the object model 
level, component interoperability and reliability are severely endangered. COM defines a reference counting 
mechanism, which solves the problem at least for non-cyclic data structures. Unfortunately, most interesting 
data structures are cyclic, and thus COM pushes some of the complexity of memory management to higher 
levels of software. Reference counting alone cannot reliably prevent memory leaks, but fortunately it can 
prevent the more dangerous dangling pointers. JVM provides true automatic garbage collection and other 
safety features.

Component Pascal is a language in the Pascal, Modula-2 and Oberon language family. It is a component-
oriented replacement for these languages. Its safety properties are similar to those of Java. For interfacing to 
third-party software and for writing device drivers, there are special libraries that allow to develop unsafe 
code in a controlled manner. In many respects, Component Pascal's object model is similar to Java's. You 
will  meet its most important aspects in Part III  of this book. A brief  history of Component Pascal, and a 
summary of the differences between Pascal and Component Pascal, are given in the appendix.

A special Direct-To-COM compiler version supports COM in that it directly maps Component Pascal records 
to type-checked COM interfaces (including checks of the MIDL parameter modes). Most importantly, this 
special compiler relieves the programmer of manually handling COM's reference counting mechanism, i.e., it 
adds a garbage collector for COM objects. Since this compiler only automates what would have to be done 
manually anyway, it doesn't incur additional overhead.

Aspect CORBA SOM COM Java Component Pascal
originator OMG IBM Microsoft Sun Oberon microsystems
IDL CORBA IDL ext. CORBA IDL ext. DCE IDL Java subset (1) C.P. subset (1)
meta classes no yes no no no
pointers (2) no (3) yes yes yes yes
implem. inheritance no yes no yes yes
interface repository yes yes type libraries yes (4) yes (5)
binary memory standard no yes yes no no
binary code file standard no no (native DLLs) no (native DLLs) yes (portable DLLs) no (native DLLs)
portable code files no no no yes no
implement. repository yes yes registry yes (4) yes (6)
version checking no (7) no (7) immutable interf. yes (8) yes (9)
calling conventions undefined native native special (10) native + special
run-time type system yes (11) yes yes (12) yes (13) yes (14)
memory mgmt. undefined undefined (15) ref. counting garbage collection garbage collection
syntactic fbcp solved no yes yes yes yes
semantic fbcp addressed no impl. inh. not addressed no impl. inh. interfaces/classes (16) by convention (16)
distributed objects yes DSOM DCOM Java RMI (17) no (18)

(1) CORBA and COM access possible through language mappings or "direct" compilers, plus interfacing libraries
(2) can pointers/references of a programming language be used directly, e.g., for method calls or parameter passing?
(3) auxiliary reference objects must be used, which reduces convenience and efficiency
(4) direct mapping of class files is typical
(5) direct mapping of symbol files is typical
(6) direct mapping of code files is typical
(7) there exists minimal support for the client to do the checking (pragmas, major/minor version numbers)
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(8) automatic check when feature is used for the first time
(9) automatic check per object when the module is loaded
(10) native calls require wrapper classes as glue; efficient in-line calls not possible; cannot create DLLs with native calls
(11) interface repository, get_interface(), InterfaceDef, is_a, describe_interface
(12) QueryInterface, IDispatch, IProvideClassInfo
(13) type tests (instanceof), type casts, Java Reflection Interface
(14) type tests (IS), type guards, Meta module
(15) except Mac SOM, which uses reference counting
(16) by convention, implem. inheritance is only used within components (Java libraries are inconsistent in this respect)
(17) object marked as remote object by subtyping from a special library interface
(18) DCOM supported as backplane object bus, via a special Direct-To-COM compiler

Table 3-5. Comparison of various object models

Which object model will win? Probably none. It is likely that COM and some CORBA implementations will 
coexist for a long time to come. Bridges will connect the COM and CORBA worlds. This will cause many 
interoperability problems, but they might not be much worse than working with several different CORBA 
implementations, or with several programming languages and one CORBA implementation, simultaneously.

Microsoft  has  recently  announced  to  extend  COM  with  support  for  automatic  garbage  collection  and 
exception handling. While remaining basically language-independent, Java-like languages should profit from 
such special support. Sun on the other hand has introduced the Java Native Interface (JNI), which uses a 
method layout similar to the one of COM. It looks like the fight for object model predominance concentrates 
more and more on COM and JVM, which begin to converge to some degree. CORBA could be reduced to a 
secondary role as an invisible communication layer that can, but need not, be used by the other two object 
models.

We have  only  talked  about  the  basic  object  models,  which  are  the  low-level  plumbing  necessary  for 
interoperability. However, object war may finally be decided by the services built on top of the object models. 
Probably  not  by  the  services  for  fine-grained  objects,  such  as  the  CORBA relationship  or  persistence 
services, but by the services that are required for reliable cooperation of medium-sized components. In a 
desktop environment,  these are compound document,  database access,  and networking services. In an 
enterprise environment, these are security services, asynchronous multicast messaging services, transaction 
services, and directory services. CORBA has standardized these services, but actual software for some of 
them is only appearing now. The several years of lead that CORBA enjoyed has turned into a head-to-head 
race with Microsoft, and Java not far behind.

A major question concerning CORBA, which is a committee design influenced by hundreds of companies, is 
whether it will  suffer from the same problem as Unix, i.e.,  whether it will  also remain an eternal "almost 
standard". Whom will enterprise customers trust more: a consortium with a mixed record of cooperation, or 
Microsoft with its sometimes monopolistic attitude?

Today (September 1997) it seems most likely that CORBA (e.g., IBM's ComponentBroker, which replaces the 
ill-fated  DSOM)  will  remain  an  important  infrastructure  for  the  communication  between  enterprise 
applications  for  some  time.  Its  Internet  Inter-ORB  protocol  (IIOP)  may  still  become  a  preferred 
communication protocol for distributed Java objects (via Java RMI). All the rest of CORBA, including the IDL, 
language bindings, and in particular the object services, have largely failed in the (component) market place. 
It is unrealistic to still hope that CORBA will play a role as an effective (component) object model with a large 
market of binary-compatible shrink-wrapped components.
Microsoft has won on the desktop, makes inroads into the enterprise market thanks to Windows NT, DCOM, 
Internet servers, and its transaction service. Microsoft also embraced Java as a language and integrated its 
run-time system closely with COM.

It  is  possible  that  over  time,  developers  will  realize  that  general  object  models  like  SOM or  COM are 
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important as "backplane object buses", but that their direct use is often too expensive. Frameworks may 
provide bridges to simpler  and more efficient object  models. These light-weight and cost-effective object 
models will typically be language-specific and may not directly support distribution. There is a precedent for 
this development: there exist industry-standard hardware backplane buses, e.g., Motorola's VME bus, that 
are expensive, complex and relatively slow. But today there exist high-volume, low-cost VME boards that are 
relatively generic (frameworks) and provide a local, simple, and fast low-cost extension bus (Industry Pak 
bus) for which there are several hundred extension boards available on the market. A similar development is 
likely to happen in the software world also. Note that once a backplane object model is available, it is much 
less expensive and risky to establish one or several more focused secondary object models on the market, 
since they don't need to be supported universally. For more exotic requirements, you can always fall back to 
the backplane object model.

Alternatively, someone may come up with an object model which is language-independent, but still light-
weight  enough  to  allow efficient  development  without  cumbersome separate  IDLs  and  inefficient  cross-
process communication. Microsoft is attempting this feat with a major new generation of COM, called COM+. 
COM+  is  an  in-process  object  model;  it  still  uses  DCOM  for  cross-process  and  cross-machine 
communications.  Compared  to  COM,  it  has  a  more  abstract  definition  of  how objects  and  classes  are 
represented in memory (and on disk). It can be regarded as a more general architecture than the Java virtual 
machine, since it supports a broad spectrum of programming languages and code file formats. In contrast to 
COM, it provides a systematic way to extend its own run-time infrastructure by third-party components (e.g., 
debuggers,  profilers,  etc.)  in a standard way.  It  eliminates the reference counting problems of  COM by 
providing true garbage collection. Its types fully support Java interfaces and classes (unfortunately including 
implementation  inheritance  and field  access across  components...).  Extensive use of  meta  data  makes 
COM+  a  very  dynamic  environment,  well  suited  for  Java,  Component  Pascal,  Visual  Basic,  scripting 
languages (whether compiled or interpreted), and it obviates the need for implementing the cumbersome and 
redundant  IDispatch  interfaces  of  OLE  Automation.  Many  standard  services,  including  security  and 
transaction services, are planned for COM+. They are similar in scope to the CORBA object services, but 
more focused and better integrated.
If  Microsoft  makes no major mistakes, the possibility to mix COM and COM+ components should make 
transition  relatively  painless  and  virtually  guarantees  the  success  of  this  new  standard.  The  technical 
advantages are compelling: a standard object model which
• is as flexible as possible, but as concrete as necessary to allow binary compatibility of shrink-wrapped 
components (although: whether giving up a standard memory representation for object interfaces is worth 
the additional complexity, and what it means in terms of efficiency, remains to be seen)
• is a virtual machine architecture for dynamic languages like Java (no need for IDLs or language-mapping 
code anymore), including scripting languages
• provides a standardized infrastructure for third-party low-level tool components
• supports garbage collection to eliminate the unsafe and cumbersome manual life-cycle management of 
objects
• supports efficient in-process cooperation of different components in a safe way

It can be hoped that COM+ helps to overcome the unfortunate Unix process concept which has so long 
stood  in  the  way  of  useable  component  software,  to  eventually  make  place  for  single-address  space 
operating systems which achieve protection through safe programming languages and possibly even through 
innovative hardware protection schemes. Meanwhile, it will be a challenge to use the new COM+ (i.e., Java) 
features in a way which does not result in maintenance and administration nightmares, caused by semantic 
fragile base class and version management problems.

3.5 Standards for compound documents

Which kinds of services should a software infrastructure for compound documents provide? Basically, it's all 
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about resource sharing. Views in a compound document share screen space, files, input devices, etc. There 
must be rules for how views must cooperate when using shared resources. Without such rules, a view may 
draw outside of its own area, may overwrite the contents of another view on a file, and so on.

Rules can be put down in a contract, i.e., they can be cast into interfaces. For such interfaces, the most 
successful standard so far is Microsoft's OLE (originally an abbreviation of Object Linking and Embedding). 
OLE defines an architecture for the visual representation of compound documents. It is complemented by 
architectures for storing OLE objects (Structured Storage) and for scripting OLE objects (OLE Automation).
These architectures are embodied in a large number of COM interfaces, e.g., for persistent storage of views, 
for drag and drop between views, for in-place editing of views, and much more. Mostly for historical reasons, 
OLE makes a strong distinction between different kinds of views, so-called document objects and control 
objects, and similarly, between document containers and control containers. Also for historical reasons, there 
is a distinction between the normal object model (i.e., COM) and a special object model for Automation, i.e., 
for component assembly. Visual Basic is a typical so-called scripting language that uses Automation.
Unfortunately, these distinctions burden the developer with unnecessary decisions and add considerable 
complexity. For example, Microsoft recommends dual interfacing, i.e., to provide every interface both as a 
normal COM interface and as an Automation interface. A COM interface is efficient and powerful but possibly 
unsafe,  while an Automation interface is safe but  less efficient  (and does not  support  exactly the same 
parameter types). Java has shown that a language-specific object model can combine sufficient power and 
safety in one object model; and Component Pascal has shown that this need not even lead to a performance 
penalty.
OLE was originally designed to allow different traditional applications, e.g., Microsoft Word and Microsoft 
Excel,  to cooperate.  For this reason,  most  OLE-enabled software are complete applications (EXE files). 
Light-weight components implemented as DLLs only appeared later, in the form of ActiveX control objects. 
Control objects share the same address space, while an application that implements a document object 
resides in a different address space than the object itself.
One reason for the success of OLE is that it eases the transition to component software by supporting both 
large traditional applications and light-weight components, although the otherwise redundant support for EXE 
files causes another considerable increase in complexity.

OpenDoc was designed by the Component Integration Labs (CILabs) as an alternative to OLE. The CILabs 
were a consortium consisting of Apple, IBM, and hundreds of other companies. OpenDoc was designed from 
scratch  to  support  true  components.  As  a  result,  OpenDoc  views,  so-called  Live  Objects,  need not  be 
designed both as components and complete applications at the same time. Another difference to OLE is that 
OpenDoc was designed as a cross-platform architecture from the outset. Like OLE, OpenDoc provides an 
automation interface in addition to its SOM object model (OSA, for Open Scripting Architecture), which is 
equally redundant and cumbersome to implement as the OLE automation interface. As a positive aspect, 
there is no technical distinction between document and control objects.
OpenDoc is  a framework consisting of  SOM classes.  It  barely uses implementation inheritance,  and no 
multiple inheritance at all, and thus should not suffer much from the semantic fragile base class problem. 
OpenDoc provides some services that in OLE are provided at a lower level, in fact already in the COM object 
model. In particular, an extension mechanism which allows to dynamically obtain additional interfaces of a 
view (similar to QueryInterface), and a reference counting scheme for memory management.
An OpenDoc document constitutes its own address space, which is shared by all OpenDoc views that are 
part of the document. A view's implementation may reside in another address space, using DSOM. Like OLE, 
OpenDoc's handling of address spaces is a compromise between putting everything into one address space 
(very flexible, convenient, efficient; but highly unsafe) and putting every component in its own address space 
(safe, but very inefficient and cumbersome). A more satisfying compromise could only be achieved through 
better hardware protection facilities (unlikely to happen) or by relying on safer programming languages. More 
on this later.

OpenDoc seems simpler and less burdened by backward-compatibility concerns than OLE, although it has to 
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make up for some deficiencies of its underlying object model. In particular, OpenDoc provides a much clearer 
notion of what a view is, and controls and containers are simply special views. OLE, however, has no clear 
notion  of  what  constitutes  a  container;  different  containers  may  support  different  subsets  of  container 
interfaces. This may result in a considerable fragility, since OLE objects will have to be tested in as many 
containers as possible, with no guarantee to work in others. It would be very helpful if Microsoft published a 
clearer and stronger contract for containers in the future.
The  varying  capabilities  of  ActiveX  containers  highlight  a  general  danger  of  the  COM  (and  Java) 
programming  style:  if  too  many interfaces of  a  service are  optional,  it  becomes exceedingly  difficult  to 
guarantee correct behavior of a client under all circumstances, because nothing can be taken for granted. 
This effect is dreaded by programmers who have used Microsoft's ODBC (Open Database Connectivity) 
library, where almost every procedure may fail, because its implementation is optional.
Incidentally, the same headache occurs with distributed objects, where a server or network breakdown may 
lead to failure of any method call. Transactions are the only practical escape from this problem, but they are 
beyond the scope of this book, and shouldn't be mandatory for locally interacting components anyway.

To help achieve a high level of component consistency and quality, the CILabs provided validation suites and 
validation services for OpenDoc parts. This was a laudable initiative that should have been a great boon to 
developers  of  compound document  components,  in  particular  containers,  and buyers  looking for  quality 
components.
However,  OpenDoc  never  gained  critical  mass  in  the  market.  Delays  of  the  Windows  version,  shifting 
commitments of the CILabs member companies, and the Apple management's lack of understanding of the 
nature of  component  software finally  made OpenDoc fail.  It  was always treated as a fringe technology, 
instead of something fundamental to the future of computing.

In spite of OpenDoc's demise, some of its ideas may still turn up in future versions of Java Beans. Java 
Beans is a framework that allows the implementation of portable controls, or the wrapping of native controls 
into  Java classes.  Java Beans  is  not  a  full-fledged  compound  document  architecture,  it  is  missing  the 
generality  necessary  to  develop  advanced  containers.  Moreover,  bean  containers  are  restricted  to  be 
immutable, i.e., they may not resize, add or delete embedded beans. This reflects the immutable nature of 
an HTML Web page.
Today, Java Beans is only a layer between Java components and full compound document architectures 
such as OLE or OpenDoc. It is most likely that in the future, Java Beans will be extended to become a full-
fledged, stand-alone compound document architecture in its own right.
Java Beans shows an interesting design quirk. It asks bean clients not to use Java's type tests on beans; 
instead, a bean provides methods which are similar to COM's QueryInterface. The fact that both Java Beans 
and OpenDoc had to introduce a QueryInterface-like mechanism in addition to Java's and CORBA's type 
systems indicates that these type systems may not be the ultimate wisdom.

The BlackBox Component Framework, which will be discussed in more detail later in this book, is similar to 
OpenDoc in many respects, but more light-weight. In contrast to all other architectures, it provides extensive 
support for containers, the most complex kind of view. It hides the difference between the OLE and OpenDoc 
user interfaces, so containers can be written that automatically look and feel correctly, whether running under 
OLE  or  OpenDoc.  A BCF's  container  mode is  a  powerful  feature  that  makes  every  container  a  visual 
designer, as we will see in the tutorial parts of the book.

Aspect OLE OpenDoc Java Beans BCF
Name of a component ActiveX Object Live Object Bean BlackBox Component
Creator of standard Microsoft Apple Sun Microsystems Oberon microsystems
Owner of standard Open Group CILabs † Sun Microsystems Oberon microsystems
Object model COM SOM Java Component Pascal
Automation Automation OSA Java Component Pascal
Compound files Structured Storage Bento yes 1) yes 2)
Multiple file formats per view 3) yes yes no no
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User controls choice of editor yes 4) yes 4) no 5) no 5)
Multilevel undo/redo support no yes no yes 6)
Menu sharing yes yes planned yes
Data interchange/conversion yes yes planned yes
Imaging Windows GDI 7) e.g., QuickDraw 7) Java AWT BCF
Properties yes no yes yes
Overlapping views yes yes no yes
Non-rectangular views yes yes no no
Embeddable in editor yes yes no 8) yes
Container iterators in principle 9) no no 10) yes
Container user interface OLE OpenDoc not available 10) OLE / OpenDoc 11)
Container modes no no limited 12) yes 13)

1) There is language and library support (metaprogramming/reflection) for internalization/externalization of beans.
2) Module Stores supports internalization/externalization of arbitrary graphs, including pointer translation.
3) Meaning that an object may support different file formats and possibly convert between them.
4) There are end user tools which allow to define a prefered editor for each file type.
5) The type of an object is stored along with its data (automated with metaprogramming facilities).
6) Several undoable commands can be composed into a script which is undoable as a whole (nested undo).
7) OLE and OpenDoc assume use of the underlying operating system's drawing libraries.
8) While being used ("run-time"), a bean container cannot be edited (i.e., moved, resized).
9) Iterator support for containers is optional, and implemented by practically no one.
10) A bean has no container support.
11) Module Containers supports general containers, while abstracting from OLE and OpenDoc user interface details.
12) Only "design-time" and "run-time" can be distinguished. At design-time, beans can be moved and resized.
13) Editor/Layout/Browser/Mask modes make special visual design or documentation authoring tools superfluous.

Table 3-6. Comparison of various compound document architectures

In the last section, it was mentioned that it makes sense to complement a universal backplane object model 
with more specialized light-weight object models. This approach can already be observed with Java. Java 
Beans is a framework that can be used as a bridge between the JVM object model and backplane object 
models and compound documents, in particular to COM/OLE. BCF follows a similar strategy for Component 
Pascal components, but with a considerably more comprehensive framework than the current Java Beans.

3.7 Standards for domain interfaces

Standards for object models and compound documents are important, but by no means sufficient to fully 
exploit  the  potential  of  the  component  software  market.  For  this  to  happen,  more  vertical,  i.e.,  more 
specialized and domain-specific standards are necessary as well. Components targeted at different domains 
cannot interoperate even if they use the same object model. For example, it doesn't make sense to embed a 
COM-based network driver in an OLE document, even though OLE is also based on COM. Their domains 
are simply too different. For integration to make sense, there must be some common ground, some common 
context. This context is described in an interface. Remember that the definition of a component says that all 
its context dependencies must be specified explicitly in its interface.

In can be expected that over time, more and more specialized standards will be developed for domains such 
as financial services, process control, Internet communication, database connectivity, and so on. Today, we 
are only at the beginning of this process, leading to more and more specialized component interfaces.
But first examples do exist. There is a group of companies that has defined OLE for Process Control (OPC); 
Apple  has  defined  interfaces  for  Internet  OpenDoc  views,  its  Cyberdog  view  collection  is  a  first 
implementation of  these interfaces; Java Database Connectivity (JDBC) is a standard interface for Java 
components that need to access relational databases; Commerce API is a Java API for secure financial 
transactions over the Web; OLE for Retail Point-of-Sales (OPOS) drives peripheral devices such as bar code 
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readers; Retail Application Framework Technology (RAFT) supports three-tiered retail applications; and so 
on.

We think that some of these initiatives will be successful, others will fail (all OpenDoc initiatives have failed 
already). Creating standard frameworks for "business objects" is a very challenging technical, political, and 
financial undertaking. But once a domain standard has reached a critical mass of support, the economy of 
scale and the choice that it affords cannot be beaten by a proprietary approach anymore.

Probably,  domain-specific  standards  will  increasingly  be  defined  by  user  organizations  rather  than  by 
vendors, since they require more domain knowledge than vendors typically have. Today's market is driven by 
vendors, but tomorrow's market will likely be driven more by customers.
The most important thing about a component interface is that it opens up a potential new market. It creates a 
battle ground where component vendors can and must compete with each other. New competitors may be 
attracted; established companies may loose their dominance.
The timely creation of a good interface standard is critical. A lengthy standardization process can result in a 
standard that is obsolete by the time it is completed. Hasty standardization can result in a low quality design 
that needs to be revised or replaced, causing loss of time and money. But there is no way around some kind 
of standardization, because without it, there will be no component markets.

4 Development Tools
Component software is a good idea, but without components, it doesn't  work. Components must first be 
created, and this requires suitable development tools. And even if components exist, there must be tools for 
their assembly. Some tools may be specialized to component assembly, others to component construction, 
and some will be suitable for both assembly and construction. Even fewer products will be good also for the 
development and evolution of entire new component frameworks.
The market for assembly tools will be at least a factor ten larger than the market for construction tools. In this 
chapter,  we  will  look  at  the  issues  raised  by  component  software concerning  programming  languages, 
framework,  and  development  environments.  Finally,  we'll  take  a  first  look  at  the  BlackBox  Component 
Builder, the tool that will be used later in the book.

4.1 Languages

Which programming languages can be used for developing components? The short answer is: almost any 
language will do. However, we also attempt to give a longer and less superficial answer to the question in the 
following text.

Basically, most languages today either look like a variant of C or Pascal, e.g., C++ and Java look similar to 
C, while Ada, Component Pascal and even Visual Basic and Eiffel look similar to Pascal. Lisp, Smalltalk and 
some other "exotic" languages constitute a comparatively small minority. For example, a 1995 poll of over 
400 university courses has shown that about 65% still used a Pascal-style language, about 16% used a C-
style language, and the rest was distributed among other languages.
As long as you use a C- or Pascal-style language, you can assume that a sufficient number of developers 
with  the  necessary  skills  is  available.  The  cost  of  learning  another  language  of  the  same  style,  e.g., 
Component  Pascal  when you know Pascal,  is negligible compared to the cost  of  learning today's  huge 
libraries and operating system interfaces.
This means that there is considerable freedom to choose a suitable language for a given job.

In practice, language-independent object models have much increased this freedom lately. Most languages 
today are able to access language-independent object models such as COM. The object model adds the 
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dynamic  features  that  the  language  may  lack.  Language-independent  object  models  make  language 
decisions less strategic than they used to be: deciding on one language for one component doesn't preclude 
using another one for another component. Using a particular language doesn't create an automation island 
anymore. Consequently, there is no reason not to use the best language for the job.

Does a language make a difference at all, considering that coding is only a small part of a project's overall  
cost? In fact,  minor syntactic  issues,  e.g.,  how a loop construct  looks like, don't  cause any measurable 
difference in a project's cost (assuming that the infamous GOTO has more or less died by now).
Thus  a  language  comparison  around  "programming  in  the  small"  doesn't  make  sense  anymore.  But  a 
modern programming language is much more than just a notation for the implementation of small algorithms. 
A well-designed programming language also supports programming in the large. To remain manageable, 
large programs must be decomposed into components that interact via specified interfaces only. A good 
programming language can be used not  only  as  an implementation  language,  but  also as an interface 
definition  and specification  language.  Interfaces  define  the  architecture of  a  system:  those parts  that  a 
developer can rely on; the static properties of a system that must not be violated; the structural backbone 
that  supports  the used components.  A language that  allows to express more of  a system's architecture 
explicitly ("statically") in its notation for interfaces, makes it possible to write tools that help ensuring the 
consistency of  an implementation with its  specification.  A compiler  can flag violations of  an interface at 
compile-time, when it is still inexpensive to correct the problem. Run-time checks make it possible to detect 
other interface violations as early as possible during testing.
The static expressiveness of a language, and the tool support enabled by it, becomes even more important 
when interfaces are modified, which is often necessary in a design and prototyping phase, or later in the 
maintenance phase of the software (which is responsible for about 80% of the total development cost!). In 
fact,  the architecture of a large software system invariably deteriorates over time, when modifications or 
extensions are made. Improving the architecture of a system, by eliminating old baggage and streamlining a 
subset of its interfaces and components, is called refactoring. Today, this is one of the most neglected design 
issues. But component-oriented languages are powerful refactoring tools that reduce the time, cost and risk 
involved in changing parts of an existing system.
This  means  that  a  state-of-the-art  programming  language  can make  a  difference  in  most  phases  of  a 
software component's life cycle, and in the life cycle of a component software system (which can be much 
longer than the life cycle of any of its components)! Thus, the common cliché that the choice of programming 
language is irrelevant is based on too narrow an argumentation that misses the dimension of "programming 
in the large".

Programming  languages  that  support  explicitly  formulated  interfacing  constructs,  e.g.,  types,  variable 
declarations and modules, are called "static" or "third-generation" languages. Examples of such languages 
are Pascal, C, and C++. Their main advantage is that they can be applied to large problems, and that they 
are efficient. Languages that avoid static constructs in order to obtain utmost flexibility with least effort are 
called "dynamic" or "fourth-generation" languages. Dynamic languages support incremental loading of code, 
garbage collection, and are closely tied to a supporting development environment. They excel at the rapid 
development of small pieces of throw-away code, e.g., scripts for component assembly. Their main virtue is 
that "everything goes",  i.e.,  they don't  have rigid type systems, verbose declaration sections, or similarly 
constraining static  constructs.  Even with the most aggressive compiler  optimization techniques, they are 
typically  slower  than  static  languages.  Close  integration  with  the  environment  means  that  their  use  is 
convenient,  and that an object model can be directly fitted to the language, so that interfacing between 
components becomes much easier as when using a language-independent object model.

Concerning component software, it is interesting to note that the gap between static and dynamic languages 
is what caused OLE and OpenDoc to end up with two levels of programmability: at the object model level 
(static) and at the automation level (dynamic).

More modern languages such as Component Pascal and Java have shown that the gap between static and 
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dynamic languages can be overcome, i.e., that a language can successfully bridge the gap by combining 
most advantages of both extremes. Such a hybrid language allows flexible development or modification of 
component implementations. On the other hand it allows to specify interfaces rigidly, so that conformance to 
these interfaces can be checked automatically. We call such a language, e.g., Java and Component Pascal, 
"component-oriented". So far we haven't talked about object-orientation, which appears both in static and in 
dynamic languages. So let's take a look at what object-orientation (OOP) is, and how component-orientation 
goes beyond OOP.

Not everyone agrees what OOP is or should be, but most people would require the following features in an 
OOP language: objects, classes, polymorphism, late binding, information hiding and inheritance.
An object encapsulates state and behavior. The behavior of an object is provided through procedures bound 
to the object's type, in so-called methods. A class is a blueprint for the implementation of a particular type of 
object. At run-time, an arbitrary number of instances, i.e., objects, of a class can be created.

Polymorphism means that sufficiently similar objects can be substituted for each other, i.e., a variable may 
be assigned objects of different types at run-time. Objects are sufficiently similar if they implement the same 
interface, i.e., if they fulfill the same contract. For example, a storage mechanism should accept any object 
which is  storable,  i.e.,  any object  which implements  the storage interface of  the mechanism.  A storage 
interface may contain the two procedures Externalize and Internalize, where Externalize causes the object's 
contents to be written to a file, while Internalize reads the object's contents from a file.

Late binding means that an object's behavior may be different, depending on which dynamic type it has. For 
example, some storable objects have different contents, and thus have different implementations of their 
Externalize procedures. A triangle object externalizes the coordinates of its three vertices, while a text object 
externalizes the character sequence that it contains. The name "late binding" stems from the fact that, due to 
polymorphism,  it  isn't  known at  compilation  time whether  a storable  object  will  be a triangle,  a  text,  or 
something else. Consequently, it must be decided later, namely at run-time, what type of object is being 
externalized and where its correct Externalize code can be found.

Information  hiding  means  that  an  object  distinguishes  between  its  interface  and  its  implementation. 
Interaction with the outside only occurs through the interface, the implementation is hidden. This allows to 
change hidden details of an implementation later, without invalidating the source code of clients.

Polymorphism, late binding and information hiding work together to make a clear separation of interface and 
implementation  feasible,  and  thus  support  component  software.  However,  implementation  inheritance  is 
something different  altogether.  It  means that  an object  can "inherit"  some behavior from another object, 
"override" part of it, and add its own new behavior. This is a convenient form of code reuse. It works fine if an 
inheriting object strictly adheres to the contract of the object from which it inherits, because then it can be 
substituted for it without breaking the contract with the clients.
Unfortunately, it is very difficult to prevent reentrant use of an object if inheritance is used, i.e., self-recursion 
can lead to unpredictable state changes in the inherited object. For example, the control flow within an object 
may  jump  up  and  down  between  baseclass  and  subclass  in  a  complex  "yo-yo"  pattern.  If  some 
implementation detail of the base class is modified in a new release, the subclass may break because its 
assumptions are no longer valid.
Information  hiding  makes  it  impossible  to  specify  the  contract  between  subclass  and  baseclass 
unambiguously (the so-called specialization interface). Implementation inheritance is such a tight coupling 
between objects that in practice it requires source code of the inherited object to be made available, i.e., 
information hiding must be given up and the implementation must serve as interface ("inheritance breaks 
encapsulation"). We have met this problem earlier under the name "semantic fragile base class problem". In 
the future, someone may come up with practical rules for a restricted kind of implementation inheritance that 
does not provoke the semantic fragile base class problem. But today, this is still a research problem. The 
book [Szyperski97] goes into more details about this problem.
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It may well turn out that implementation inheritance is the GOTO statement of the nineties. Like the GOTO in 
the sixties, inheritance is very convenient, programmers are used to it, it is not always obvious how to do 
without it, doing without it can make a program longer, and the issue can cause heated debates. But more 
fundamentally, inheritance resembles the GOTO in that it causes uncontrollable transfers of control, which 
makes it difficult to understand a program, and risky to modify it.

Inheritance  is  harmful  if  used  across  component  boundaries.  Whether  inheritance  is  used  inside  of  a 
component is irrelevant. Since a component is a black box, it may be implemented using implementation 
inheritance,  functional  programming,  assembly  language,  or  whatever  is  suitable  for  this  particular 
component. The only thing that matters is that the interface is implemented correctly, i.e., that the contract 
with the outside world is not violated. Within a component, you have exclusive control over all your source 
code and may freely change internal interfaces whenever you want.

Component-oriented  languages  help  to  create  more  reliable  component  software  systems  faster;  by 
providing "component-oriented" features in addition to the OOP features polymorphism, late binding, and 
information hiding. 

Safety is such a feature. Safety means that a language guarantees some basic "rights" of a component, 
which need not be put down in every interface contract anew. In particular, a safe programming language 
guarantees  memory  integrity,  i.e.,  one  component  cannot  destroy  another  component's  memory.  This 
simplifies the contractual obligations of every component, since correct memory management - otherwise the 
source of  about  half  of  all  programming errors  -  can simply  be taken for  granted.  This  is  achieved by 
providing a garbage collection service, i.e., memory is reclaimed automatically when it isn't used anymore. 
Garbage collection is invisible, and relieves programmers of manual deallocation.
Safe languages yield the kind of protection that is desirable in a software environment consisting of tightly 
interacting components, especially in view of the fact that traditional hardware protection mechanisms are 
not applicable.

In the future, more and more customers could demand the use of safe languages for the construction of a 
component, because this can greatly reduce the number of mysterious crashes, and thus the distrust in the 
component. Once components become ubiquitous, quality issues necessarily become a major concern.

A component-oriented language also provides the means to achieve safety on a higher level than basic 
memory integrity only. Information hiding is part of the answer, since it allows to hide, and thus to protect, 
implementation details. Most OOP languages limit information hiding to single classes. This is too restrictive, 
since typically several classes must cooperate to provide a particular service. These classes must be able to 
work together closely, while their cooperation should be protected from outside interference. This means that 
these classes have their own private interface, to be shared with no one else. To guarantee compliance with 
this  kind  of  private  contract,  a  programming  language  must  support  information  hiding  across  several 
classes.  To  do  this,  a  language  should  provide  a  "module"  or  "package"  construct,  like  the  languages 
Component Pascal or Java.
Information hiding beyond single classes is an important requirement for a component-oriented language, 
because it enables a software architect to establish customized safety properties (i.e., invariants) throughout 
a component software system.

A component-oriented language implies that an implementation provides an object model which supports the 
dynamic loading of  new components.  Typically,  there is a library service that  allows to  explicitly  load a 
component, given its name or another suitable identifier. Such a facility is called metaprogramming support, 
since one program can manipulate (in this case load) another program. Reflection is another common term. 
Often, a library provides extensive run-time access to items of a loaded component. This requires extensive 
run-time type information (RTTI) that goes far beyond the minimal information supported by OOP languages 
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such as C++.
The following table gives a historical perspective to the evolution of imperative programming:

Decade Programming technology Key advance
1940s machine codes programmable machines
1950s assembly languages symbols
1960s high-level languages expressions and machine-independence
1970s structured programming structured types and control structures
1980s modular programming separation of interface from implementation
1990s object-oriented programming polymorphism
2000s component-oriented programming dynamic and safe composition

Table 4-1. Evolution of imperative programming

Each step is an evolution from its predecessor and is characterized by one or two key advances. The step 
from machine code to assembler was based on the introduction of symbols, a step which has often been 
pivotal  in other fields of  human endeavour.  High-level languages introduced machine-independence and 
expressions as exemplified by Fortran which is a shortening of "formula translation". Structured programming 
made two steps: definable types applied to data; and code, at every level of detail, was constrained to have 
the form of a "pipe" with one way in and one way out. Modular programming, as exemplified by Modula-2 
and Ada, introduced the formality of an interface on each software component. Object-oriented programming 
added polymorphism, i.e., extensible types. Finally, the step which makes component software a reality, by 
enabling independently evolving components to cooperate, is the dynamic loading and safe integration of 
components.

Figure 4-2. Component-oriented programming languages

We can now summarize the most important conclusions concerning component software and programming 
languages:  the  choice  of  a  programming  language  can  influence  a  project's  cost  during  most  of  a 
component's  life  cycle;  some languages  support  component  software decidedly  better  than  others;  and 
standardized language-independent object models make the choice of language less strategic than it used to 
be.

In short: there is no good reason not to use the best language for the job.

Probably there will always be a choice of languages. On the one hand, existing languages never die; witness 
Fortran, Cobol, Basic, or Pascal. On the other hand, one-language approaches have never been successful. 
It was often thought that a language would be the last one; witness PL/1, Ada, C++, and now Java.
In fact, standardized object models could even make the development of new languages more attractive, if 
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(and only  if)  the language designers  take care  from the outset  that  they allow for  good support  of  the 
important object models on the market.

Table 4-3 compares several programming languages with respect to their support for component software. It 
is not the intention to provide an exhaustive comparison of all existing languages; only the most important 
general-purpose languages have been considered.

Aspect Pascal Modula-2 C C++ Smalltalk Java Comp. Pascal
structured syntax yes yes no no no no yes
simplicity and regularity yes yes no no yes no (1) yes
static objects yes yes yes yes no no yes
static types yes yes yes yes no yes yes
dynamic types no no no yes yes yes yes
efficiently translatable yes yes yes yes no yes (2) yes
dynamic binding no yes (3) yes (3) yes yes yes yes
information hiding no yes (4) no yes (5) yes (5) yes (4) yes (4)
polymorphism no no no yes yes yes yes
inheritance no no no yes yes yes yes
multiple inheritance no no no yes no yes (6) no
full type safety no (7) no (7) no (7, 8) no (9) yes yes yes
garbage collection (10) no no no no yes yes yes (11)
dynamic loading no no no no yes yes yes
distinct interf. / implem. no no no no no yes (6) no (12)

(1) Language definition includes 34 classes and hundreds of methods; there are many exceptions of the rules;
the language features interlock in a way that it is difficult to explain one feature without knowing the others.

(2) Absence of static types and value parameters incur a certain performance penalty.
(3) Procedure types / pointers to procedures.
(4) Modules / packages.
(5) Within single classes only, no invariants across classes can be guaranteed.
(6) Interfaces for (multiple) interface inheritance; classes for (single) implementation inheritance.
(7) Unsafe variant records; explicit dispose.
(8) Unsafe pointers.
(9) Inherits unsafe C features.
(10) Garbage collection is necessary to achieve full type safety.
(11) Produces less garbage than languages without static types, thus more efficient.
(12) By convention, implementation inheritance is rarely used, thus separation is not overly important.

Table 4-3. Comparison of programming languages

Note that even truly component-oriented languages like Java and Component Pascal are not perfect. For 
example, they don't yet support pre- and postconditions in an interface, as Eiffel [Meyer89] does. (Eiffel is not 
component-oriented.  Its  type  system requires  global  analysis,  which  contradicts  the  idea  of  component 
software;  it  lacks  a  package  construct;  and  its  libraries  are  strongly  coupled  through  implementation 
inheritance.) Generics that are compatible with separately compiled and loaded components would also be 
desirable in Java and Component Pascal, to increase the opportunities for code reuse. (C++ templates are 
not compatible with component software in the sense that a template cannot be compiled separately from its 
clients; each instantiation has to generate new code with all the resulting duplication of code.)

Java is highly portable due to its virtual machine. This is its greatest strength. It is also a weakness, because 
it makes interfacing to legacy software and to hardware difficult or impossible without falling back to other 
languages.
Component Pascal is a modern component-oriented language that complements Java, because it is much 
smaller  and  simpler,  and  not  bound  to  a  virtual  machine.  These  factors  are  particularly  important  for 
embedded systems, such as robot control systems. For cost reasons, even high-performance embedded 
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systems have only limited amounts of memory, and it is often necessary to write new device drivers for such 
applications.  The  Portos [Portos]  operating system is designed for  embedded real-time applications that 
have to meet hard real-time constraints, and yet have to be extensible in a component-oriented way. Portos 
is  completely  implemented  in  Component  Pascal,  and  supports  applications  written  in  Java.  The  two 
languages are close enough that they can even share the same asynchronous real-time garbage collector.
Of course, due to its relative simplicity and regularity, Component Pascal is also well  suited for teaching 
programming,  although  it  was  not  designed  for  teaching  in  particular.  It  was  designed  to  support  the 
development and evolution of complex component-based software systems.

The previous discussions have given us a deeper understanding of  what a component is, by looking at 
programming issues and desirable language support. To conclude this section with some additional insights 
into the nature of components, let us go back to the definition of a component given earlier:

A  component  is  a  unit  of  composition  with  a  contractually  specified  interface  and  explicit  context  
dependencies  only.  Components  can  be  deployed  independently  of  each  other  and  are  subject  to  
composition by third parties.

Now we can add some further observations and definitions to this short one. A component is a black box that 
provides  some  services,  through  a  so-called  export  interface,  and  requires  some  services  from  other 
components, through a so-called import interface. The import interface embodies the component's context 
dependencies.
A component is a unit for packaging, deployment and loading. A component can be loaded, but there is at 
most one instance of it in memory anytime, i.e., it doesn't exist in many instances like objects usually do. A 
component is rarely copied; usually for deployment and distribution only.
A component  typically  consists  of  several  classes  and  possibly  some  objects,  e.g.,  class  factories.  A 
component has a configuration,  i.e.,  a certain state when it  is loaded. The component defines a default 
configuration.  This  is  often achieved by packaging some data  files,  so-called  resources,  along  with  the 
component's code. These resources may be forms, strings, or other parameters; they are an integral part of 
the component. Some parts of a component's configuration may be changed at run-time, e.g., by replacing 
the  component's  configuration  objects,  such  as  class  factories.  A  component  should  be  considered 
immutable, i.e., permanent changes to its configuration are recorded outside of it, e.g., in preference files or 
in a system registry.
In summary, a component is an immutable entity that internally consists of classes, configuration objects, 
and resources. In Component Pascal, the smallest component is a module.

4.2 Frameworks

A component has an export interface. This interface may contain as little as one procedure through which a 
handle to a class factory can be obtained. The class factory in turn can be used to allocate new objects of 
the classes that the component implements.
But an export interface may also define interfaces for  other components. Such an interface constitutes a 
standard to which these other components conform. Components that conform to one or several common 
standards may be interoperable, components that conform to no common standard are not interoperable.

For example, OLE defines a number of COM interfaces. COM components that implement objects with these 
interfaces can be used in compound documents. As a refinement of the common definition of an application 
framework in [Lewis95], the following definition is given:

A component  framework  is  a  collection  of  component  interfaces  that  embodies  an  abstract  design  for  
solutions to a family of related problems.
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A component framework is a collection of contracts, i.e., rules that specify how objects can work together. 
Some of these rules may be mere conventions. Other rules may be easy to follow because the framework 
provides suitable code along with the interfaces. For example, GUI frameworks provide default behavior for 
applications, windows, menus, and so on. If the default behavior is not replaced, it can be expected to follow 
the rules, e.g., to implement the correct user interface guidelines of the underlying platform. Still other rules 
may actually be enforced by the framework, e.g., drawing routines may prevent an application from drawing 
outside of its windows. Enforcement means that the framework provides some services only through safe 
code that  guarantees the necessary invariants  (e.g.,  the invariant  "drawing always occurs inside  of  the 
application's windows"). The key to the enforcement of such invariants, which typically span several objects, 
is the information hiding across several classes, as discussed in the previous section.

In contrast  to the older application frameworks, a component framework defines rules for independently 
developed and dynamically  loadable components,  rather  than for classes that  are linked together into a 
monolithic  application.  A  component  framework  may  provide  interfaces,  possibly  along  with  some 
procedures. In contrast to most application frameworks, component frameworks are black-box frameworks, 
i.e., frameworks that can be used without access to their source code. Like a perfect contract, a pure black-
box interface is an ideal that can only be approximated in practice.
Application frameworks that heavily rely on implementation inheritance are white-box frameworks that are 
published together with their source code. In contrast to application frameworks, a component framework 
need not be a class library. In fact, a component framework may even contain no code at all; it may just be a 
collection  of  interfaces.  This  is  a  difference  to  older  interpretations  of  the  term "framework",  where  the 
existence of actual code played a more important role. In component frameworks, actual code mostly exists 
for rule enforcement.

Years ago, Microsoft tried a "Windows everywhere" strategy, i.e., one operating system for every possible 
use. Today, Microsoft is pushing an "Active Platform" strategy. One interpretation of this shift is that they 
realized that the actual code (i.e., Windows) is not important; that only the collection of interfaces (i.e., the 
COM interfaces constituting the ActiveX Platform) matter, as long as there is  some implementation of the 
these interfaces. Hardware designers have understood the importance of architecture versus implementation 
since the IBM 360 in the sixties; software designers are only now catching up to this insight.

A  framework  embodies  architecture,  i.e.,  the  design  of  extension  components  and  their  interactions. 
Implementing an extension component according to the standard defined by a framework's interfaces is a 
form of reuse: design reuse. Since developing a new design is so much more difficult than implementing an 
existing design,  design reuse is more important  than mere code reuse. Creating a new design requires 
knowledge of an application domain, experience with other designs, the capability to distinguish essential 
issues from unimportant ones, and a flair for recognizing and inventing patterns. Since bad designs can 
become  very  expensive,  only  the  most  experienced  developers  should  create  frameworks.  Other 
programmers  should  focus on good implementations  of  existing designs,  i.e.,  develop  components  that 
implement given interfaces. Even more programmers will concentrate on component assembly.

By embodying design, frameworks have to some degree become competitors to Computer-Aided-Software-
Engineering  (CASE)  tools.  The  advantage  of  frameworks  compared  to  object-oriented  design  methods 
(OODM) is that the design is directly specified in a genuine programming language, and thus conformance of 
extension components can be checked by the compiler. However, provided that they become more flexible, 
CASE  tools  may  still  play  an  important  role  in  the  documentation of  frameworks,  and  possibly  in  the 
automatic generation of some kinds of components.

It  is well  documented that  framework design is  an iterative process [Lewis95].  In  each iteration,  a new 
solution based on the framework is developed. Usually, this experience leads to some modification of the 
framework and the other already existing extension components. It is hoped that after several iterations, the 
framework  becomes  stable  enough  that  new  extension  components  can  be  developed  without  further 
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framework modifications. For non-trivial frameworks, this process can easily take several years. The current 
hectic production of new CORBA, ActiveX and Java frameworks is dangerous because their definition often 
seems to develop faster than the necessary experience. Moreover, standardization and certification issues 
even further complicate the already difficult development process.

The time needed to obtain good framework designs has far-reaching financial implications. In particular, in-
house developers in large enterprises need to be aware that developing reusable software components is 
almost like developing products for the global market:  it  requires a potentially large up-front  investment, 
professional  documentation,  a  market  calibration  phase,  (internal)  marketing  and  sales,  and  post-sales 
support. This approach is too expensive if the return-on-investment is calculated on a per-project basis - 
instead of considering the longer-term savings, time-to-market reduction, lower risk of failure, and better 
evolvability of component software systems.

4.3 Development environments

Most of us who use software today want it to solve a problem, and not to be a problem itself. Thus we are 
interested in solutions, and not in programming. In this sense, programming is an undesirable activity, to be 
avoided  wherever  possible.  Unfortunately,  each  kind  of  customization,  and  this  includes  component 
assembly, will  require programming to some degree. Many tool vendors promise that you can customize 
existing software "without writing one line of code".
Don't  believe them. Computers are so dumb that you have to tell  them exactly what you want of them. 
Whether or not this is called programming, it still  requires all the necessary skills, such as precision and 
explicitness.
For example, there are some component assembly tools that allow to specify behavior in a graphical way, or 
worse, in a mixture of graphical  and textual  ways. A picture is worth a thousand words. This is true for 
describing specific  situations, but rarely for describing behavior or general  rules. Graphical  programming 
tools can be suitable under special circumstances, where problems are very limited in size and scope. Small 
finite state machines are a good example.  For more complex problems, development will  become more 
cumbersome - and maintenance much more cumbersome - than with a solid "real" programming language.

Ideally, a development tool for component software should be based on a component-oriented language. 
Tools  cannot  fully  compensate  for  the  weaknesses  of  a  programming  language.  For  example,  a  safe 
language prevents whole classes of errors, which is simpler and less expensive than forcing programmers to 
debug them later, using fancy and expensive debugging tools. Concerning debugging, the old rule holds: the 
sooner an error is caught, the less expensive its correction is. If a language has an expressive type system, 
its  compiler  helps  you detect  errors  already at  compile-time,  before  you deliver  the  component  to  your 
customers.  Even if  an error can only be detected at  run-time,  it  is  easier  to  trace back the earlier  it  is 
detected. Checking possible error conditions, such as violations of a procedure's preconditions, is called a 
defensive programming style. It is a desirable programming style for any kind of production software.

For component assembly, a development tool can be expected to provide the basic RAD (Rapid Application 
Development) facilities known from tools such as Microsoft's Visual Basic or Borland's Delphi. Basically, this 
is a collection of controls such as buttons, text fields, list boxes, etc., and a graphical editor for controls. 
Typically, the editor allows to interactively lay out controls in a form and save the layout in a file. This is a 
simple form of a compound user interface, with forms and controls as persistent objects. A tool should not 
generate source code out of a layout, since this makes later changes cumbersome and impossible without 
access to the development tool, and possibly even the program sources.
Source code generating "wizards" are a fashionable feature of many RAD tools. However, they should only 
relieve you of  obvious and repetitive typing chores.  They should  not  perform any magic  that  you don't 
understand; otherwise the tool becomes your master, instead of the other way around. In general, it can be 
said that the better a programming language is, the less need there is for source code generating tools, 
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because the language will allow to put the repetitive code into a library rather than regenerating it again and 
again with only minor variations.

Generating source code out of a form layout is one extreme. But beware of the other extreme as well. The 
other  extreme is  source code embedded in  user  interface elements.  It  should  be possible to obtain an 
overview over the complete source code of your component or component assembly without accessing user 
interface elements, i.e., code should not be hidden behind buttons or other "rat holes". If bits and pieces of 
your code are spread over hundreds of rat holes, maintenance becomes an extremely messy business that 
limits the growth potential  of the software. Growth potential  is important,  because successful component 
assemblies tend to adapt to new needs and thus to grow over time. Thus think twice before choosing simple 
scripting tools that can only perform component assembly. You may solve 80% of your immediate problem 
very quickly with them, but the remaining 20% may take longer than the first 80%. In large enterprises, it may 
be appropriate to have specialized groups for component construction and for component assembly, but this 
separation should be driven by organizational considerations, not by the tools.

Flexible interface and source code browsers and search facilities are useful  to give you quick access to 
information about library components and your own components. A symbolic debugger should support a 
defensive programming style, in particular since you can only debug your own components. Components 
that you bought will usually be black boxes without source code, thus you should find errors in your own 
code as early as possible, before the behavior of other components can be affected.

A component-oriented programming language already supports the notion of black-box components, e.g., 
through a module or package construct. Without such a construct, packaging a component becomes difficult. 
Pure object-oriented environments, like Smalltalk, often suffer from this problem. In such systems, it can 
become extremely difficult to find all objects that you need to pack together into a component, because you 
have no way of knowing whether you missed some objects. The packing of components is one problem of 
such understructured environments, maintenance is another one. Considering that about 80% of all software 
investments today are spent for maintenance, there is good reason not to make it even worse in the future.

Rapid application development is important to keep up with the quickly changing business environment that 
is typical today. Sometimes, this means that the most appropriate approach is to produce "throwaway" code 
as quickly as possible, so that it can be used, written off, and replaced quickly. This is better than producing 
the perfect solution for a business that already doesn't exist in this form anymore. For example, quick-and-
dirty extensions realized with implementation inheritance are perfectly ok if the software is scrapped before it 
needs to be revised or adapted to new needs.
But  rapid  development  and  controlled  evolution  can  be  compatible.  With  suitable  documentation  and 
refactoring  aids,  a  component-oriented  RAD  tool  can  both  support  rapid  development  and  "rapid 
maintenance".

Ideally, a development tool supports the whole life cycle of software. Today, there are no tools yet that can do 
this for component software, since traditional object-oriented design methods and CASE tools are based on 
the closed-world assumption of monolithic software. Tools suitable for component software would have to 
support black-box components for which no source code is available, interface management of components, 
run-time configuration management, and continuous incremental evolution.
This last point is important: the life cycle of a component software system can be much longer than the life 
cycle of any of its components. Successful component software never dies, it is just gradually extended, or 
refreshed by replacing outdated components.  In  this  sense,  component  software can be regarded as a 
systematic way to deal with legacy issues.

Component  assembly  and  even  component  construction  are  easy  compared  to  the  design  of  new 
component frameworks.  Since the controlled evolution of a component framework depends so much on 
programming language support for guaranteeing integrity and evolvability, it would be too expensive not to 
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use a component-oriented language for such an endeavour.

A very simple quick check of the quality of a component development tool is whether the tool itself is built out 
of components, i.e., whether it takes its own medicine. Otherwise it indicates that the tool designers are not 
confident enough of its power.

4.4 BlackBox Component Builder

 FINALIST

In the remainder of this book, the BlackBox Component Builder development tool is used. It is 
based on the language Component Pascal, a component-oriented refinement of Pascal. If you 
know Pascal  or  Modula-2,  you will  soon feel  at  home with Component  Pascal,  and like its 

increased convenience and safety, e.g., its garbage collector. For a description of the differences between 
Pascal and Component Pascal, see Appendix A and Appendix B.
The BlackBox Component Builder has been designed as a component development tool from the beginning. 
It provides the usual RAD facilities such as controls and a forms-based user interface editor. However, it is 
not limited to forms-based design only. Controls are views, and forms are just a special example of a view 
container.  Any  other  container  can  be  used  as  basis  for  compound  user  interfaces,  e.g.,  a  hypertext 
container.  The  BlackBox  Component  Framework  (BCF)  defines  a  general  abstraction  for  containers, 
designed in a way that user interface details are hidden. On Windows, container views look and feel like 
ActiveX containers;  on Mac OS,  container  views look  and feel  like OpenDoc containers.  The Windows 
version transparently supports OLE, i.e., the user sees no difference whether a view is an ActiveX object or a 
BCF  view.  BCF  is  platform-independent,  i.e.,  source  code  can  be  transferred  between  all  supported 
platforms by mere recompilation. Currently there are versions for Windows 3.1/95/NT and for Mac OS 7.
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Figure 4-4. BlackBox Component Builder for Windows

Figure 4-5. BlackBox Component Builder for Macintosh

BCF has extensive support  for compound documents and compound user interfaces. Consequently it  is 
designed as a black-box framework, i.e., it uses implementation inheritance only rarely and only where it 
doesn't make interfaces ambiguous. Care has been taken to ensure a high degree of safety, e.g., to keep the 
effects of a malfunctioning view as local as possible.

One of the most important goals for BCF was to provide excellent maintainability. This is achieved by relying 
on  composition  rather  than  inheritance  for  code  reuse,  by  clearly  separating  program  logic  from  user 
interface code, and by making the architecture as explicit as possible, i.e., by expressing it in Component 
Pascal's powerful yet simple type system wherever feasible.

Although Component  Pascal  is a dynamic  language with garbage collection,  it  is  compiled straight  into 
efficient machine code; no interpretation is involved. This gives good control over the run-time behavior of a 
program and allows to implement even computationally expensive algorithms, e.g., numerical algorithms. It is 
possible to use special compiler-supported libraries that permit low-level programming such as writing device 
drivers.
The  BlackBox Component  Builder  is  written  100% in  Component  Pascal;  and  the  compiler,  the  visual 
designer, the hypertext subsystem, and so on are all implemented as Component Pascal modules, i.e., as 
components. Even the run-time system with its garbage collector has been written completely in Component 
Pascal.
A component  consists  of  at  least  one  module;  components  consisting  of  several  modules  are  called 
subsystems. A module is Component Pascal's unit of compilation and loading, i.e., a large system can be 
compiled incrementally component by component, and is likewise loaded incrementally. Components that 
are not used are not loaded either. A programmer can explicitly cause new components to be loaded at run-
time, in order to extend the system's capabilities while it runs. Although Component Pascal is compiled, the 
compiler is so fast and well integrated that it feels like an interpreted environment.
The BlackBox Component Builder allows to directly access non-Component-Pascal software. For example, 
the Windows versions supports the complete Windows NT APIs, access to arbitrary DLLs, and the creation 
of  DLLs.  A special  version of  the Component  Pascal  compiler  even directly supports  COM and DCOM 
("Direct-To-COM Compiler with Safer OLE").
Figure 4-6  gives an architectural  overview over the  components  constituting  BCF.  Rectangles  with  thin 
outlines are individual modules, while rectangles with thick outline are whole subsystems, i.e., collections of 
related modules:
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Figure 4-6. Architectural overview over the BlackBox Component Framework

At the lowest level, there is a library of largely independent modules providing a variety of low-level services, 
such as mathematical routines, metaprogramming support and files. On top of this base library, there is a 
number of modules which support  a flexible and platform-independent compound document /  compound 
user interface architecture. Built on top of this architecture, a text processing component, a forms editing 
component,  and  a  development  environment  component  are  provided.  Thanks  to  intensive  reuse,  this 
comprehensive system is so small that it fits on three floppy disks. For example, the symbolic debugger that 
is part of the Dev subsystem uses the Text subsystem to provide a convenient hypertext-like front-end to the 
symbolic debugger.
We will meet the most important modules of the framework in parts III and IV.
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