Diss. ETH Nr. 9884

L :
Insight ETHOS:
On Object-Orientation in Operating Systems

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY (ETH) ZURICH

for the degree of
Doctor of Technical Sciences

presented by
CLEMENS ALDEN SZYPERSKI
Dipl-Ing., Aachen Institute of Technology (RWTH), Germany
born on October 19, 1962
citizen of Germany and the United States of America

accepted on the recommendation of
Prof. Dr. N. Wirth, examiner
Prof. Dr. H. M&ssenbdck, co-examiner

1992

;
£
|
i

%
%
.
§~

SR

Pt

To Bianca, my parents, and all my family ...

Acknowledgements

Wer immer nach dem Zweck der Dinge fragt
wird ihre Schonheit nie verstehen,
(Halldor Kiljan laxness)

The adventure of writing a book in general, and a thesis in particular is hard to
imagine without the support from many people. For encouraging my work |
am most indebted to my advisor Prof. N. Wirth. His ability to combine
ingenuity, pragmatism, and Occam's razor is hardly paralleled. For a liberal
supervision of my project | would like to express my warmest thanks to Prof.
H. Mdssenbdck. He introduced me to the ideas of Object-Orientation and
made possible the continuous existence of a friendly atmosphere in our
group.

The Oberon project, jointly led by Proff. N. Witth and J. Gutknecht, was a
source of inspiration that never dried up. Oberon's simplicity and rigor were a
constant yardstick to measure against. Smooth and productive, the work with
the Oberon system and language was never less than pure fun.

All my colleagues at the Institute for Computer Systems were of significant
help throughout all the ups and downs. Josef Templ created the starting point
for my project by designing the key aspects of the language Oberon-2. Marc
Brandis, Robert Griesemer, Cuno Pfister, Josef Templ, and Wolfgang Weck
contributed with numerous discussions on all topics of the thesis. Robert
Griesemer was always willing to try out new releases of Ethos and ported
some of his own applications. Régis Crelier provided the rock-solid Oberon-2
compiler and was always willing to discuss language design and
implementation issues. Beat Heeb was a dependable source of profound
technical knowledge in all areas of subtle hardware problems. Beat Stamm
shared his insights into aspects of font and image rastering. Stefan Ludwig
proofread the thesis and encouraged with his enthusiasm for new ideas.
Finally, Wolfgang Weck provided the handy user interface for the PAT search
engine by Prof. G. Gonnet that was used to retrieve definitions and quotations
from the Oxford English Dictionary.

Vi

§ Contents

1.2

2.2

Abstract X
Kurzfassung xi
Guide to the Reader xii
Preamble xiii

Introduction 1

Basic Concepts of Object-Oriented Programming 1

144

What is Object-Orientation? 1

Encapsulation « Polymorphism « Late Binding « Inheritance
Subtyping vs. Subclassing

Why Build Something in an Object-Oriented Fashion? 6
Static Aspect « Dynamic Aspect » Evolutionary Aspect

Design Aspects of an Extensible Object-Oriented System 8
Simplicity « Extensibility Static « Safety Dynamic Safety » Efficiency

What an EOO Supporting Language should Provide 10
Extensibility » Expression of Strong Constraints « Safety « Efficiency

What is an Operating System? 12

1.241
122

Older Operating System Models 13
Open Operating System Models 14

Object-Orientation in Operating Systems 17
Motivation and Goals 17

211
212
213
214

Two Orthogonal Possibilities 17

Why Write a Program (an OS) in an EOO fashion? 18
Why should an OS Support EOO Programming? 19
What means "Supporting EOO Programming’

foran 0OS? 20

Generic Object Manipulation « Dynamic Loading Garbage Collection
Finalization « Exception Handlfing

Otherwork 24

Cedar, Oberon « Smalltalk « Choices + Clouds « Guide/Commandos « SOS «
Amoeba « Mach/NextStep « V Kemel « Chorus « Plan 9 « PenPoint «
Vamos/Overview

23

2.4

2.5

2.6

3.2

3.3

vii

Design Principles 30
231 Before Decomposing a System 30
232 Known Principles 31

Typing and Type Safety « Modularization and Separation of Concerns «
Hierarchical Layering of Abstractions « Separating Models and Views

233 New Principles / Generalizations of Known Principles 38
2.3.3.1 Separating Carriers and Riders 38
2.33.2 Directory Objects 43

System Structuring 47

244 Primary System Structure Given by a Module Hierarchy 47

Module Coupling « Safe Modules vs. Safe Module Interfaces « What belongs
into a single module?

242 The Type Hierarchy: A Secondary System Structure 51
243 The Canonical Module Structure 52
244 System Structuring: Summary and Consequences 56

Suppotting EOO 57

251 Generic Object Manipulation 57

252 Dynamic Loading 59

253 Garbage Collection and Finalization 60
254 Treatment of Exceptions 64

Other (Traditional) OS Functionality 65

Device Abstractions « Multiprogramming « Memory Management «
Protection » User intetfaces « Administrative Support

Ethos: ACase Study 69

Motivation and Goals 70

3141 Why Another 0S? 70
3.1.2 A Case Study: Concentrating on important Points 71

Ethos as an Evolutionary Successor of Oberon 74

321 Strong Concepts of the Oberon System 74
3.2.2 Limits of Oberon's Extensibility 76

Where are the differences between Oberon and Ethos? « Why are the Ethos
enhancements important?

Ovetview of the Ethos System Structure 78

3.31 Modular Structure 78
3.3.2 Rationales Behind Feature Assignments to Modules 80
333 Abstractional Structure 81

viii

3.4 Interesting Components of the Ethos System 84

341
3411
3412

342

34.21
3422
3423
3424
3425
3426
343

3431
3432
3433
3434

344

345
3451

3452
3453
3454

346

347

34.71
3.4.7.2
3473
3474
3475

34.8

3.4.8.1
3.4.82
3483
3484

Interfacing to the Machine 84
Installation Support 84
Exception Handling Strategy 85

Memory Management and Garbage Collection 87
Objects 87

Memory Allocation 89

Garbage Collection 89

Object Finalization 94

Treatment of Subobjects 100

Coding of Finalization and Subobject Attributes 104

Module Loader and Meta-Programming 105

A Non-Recursive Module Loader 106

Module Unloading 112

Meta-Programming and Reflection Facilities 116
Further Design Decisions and Technical Remarks 120

Everything in the Heap + Packaged Module Sub-Trees: Libraries « Calls to
Unloaded Modules » Extensibility of Heap Manager and Module Loader

_ Preemption — Tasks, Coroutines, Threads, Processes 123

Decisions taken for Ethos s Monitors « Multiple Stacks

Files, Streams, and Object Externalization 128
Sequential and Positionable Streams 129

The Stream Boitleneck Interface

Object Externalization and Internalization 131
Dealing with Aliens 133

The File System 136

File Buffering « File Releasing « File Directory

The Text System 140

Scanning Texts » Elements « Displaying Texts « Implementing Texts
The Display System 148

The Pixelmap Interface and the Coloring Model 149
The Childmap Concept 152

The Font Subsystem 152

Managing Multiple Screens 153

Frames - Carrier/Link/Rider Scheme for Pixelmaps 154

User Interface Concepts 158

Low-Level Organization of Screens 158
Command nvocation Conventions 164
Standard Look and Feel 167

odels and Views - An Example: TextFrames 171

3.5

3.6

3.7

4.1
4.2
43
4.4

4.5

349 System Configuration and The Bootstrap Process 177

Examples of Extending Ethos 180

351 An Altemate File Directory Model 181
352 A Simple Remote File System 185

353 Adding Threads 186

354 Extending the Text Model 190

355 Changing the User Interface Model 191
356 Remote Pixelmaps - Printing 192

357 Adding a New Abstraction ~ Graphics 193

Porting Ethos 193

3,61 Whatis Portable? What is Not? 193

3.6.2 Effort Required when Porting Ethos 194

3.6.3 Experiences with Porting Ethos to a New Machine 194

History of the Ethos Project 194

3.71 Phases of Project Evolution 195

3.7.2 Bootstrapping the System on a Bare Machine 197
3.7.3 Acquiring Confidence Into New Implementations 198

Conclusions 203

Was it Worth the Effort? 203

Is the Price Paid Justified? 204

How Difficult are Extensions to do? Whete are the Limits? 205

What can be Learned? 206

441 What a Processor Architecture should provide 207

442 What a Machine Architecture should provide 207

443 What a Language should Allow / must not Allow 208
Systems « Subtyping/Subclassing » Covariant Subtyping « Loopholes

444 Whata Compiler should do 210

445 What Proper Modules should provide 212

The Future 212

Bibliography 215

Abstract

Ethos: The characteristic spirit, prevalent tone of sentiment, of a people or community;
the “genius” of an institution or system. (Aristoteles — Rhetorics ii. xii-xiv)

Ethos is both, an Elaborate Thesis on Operating Systems and an Ephemeral
Thesis Operating System: It is the name of a project aiming at design
principles of Object-Oriented Operating Systems, as well as the name of an
actual implementation used as a case study to validate the found design
principles. This thesis covers the Ethos project and system.

Results of the Ethos project are generalizations of design principles for
object-oriented systems, namely the Carrier/Rider Separation, and the
Directory Object concept. The former aims at a widely applicable scheme for
separating data management from data access tasks. The latter generalizes the
notion of prototype objects to manage integration of extensions into the
running system. Another result of the Ethos project is the introduction of a
flyweight pre-emption concept called engines, with the key attribute that
engines may share a single stack.

The Ethos system is an evolutionary successor of the Oberon system, and is
implemented using the language Oberon-2. The Ethos system is based on a
strongly typed hierarchy of abstractions. Each abstraction has a default
implementation, but multiple implementations of the same abstraction may
be used simultaneously. As the extensibility of Ethos goes down to the very
machine level, Ethos is well suited to prototype new operating system
services.

Ethos contains a finalizing garbage collector with integrated support for
identity directories, a facility for dynamic integration of modules into the
running system, and a framework for developing extensions. The document
editor Write has evolved as part of the Ethos system and is used as the
primary medium for user activities. (Write has also been used to prepare this
thesis.) A refined version of the Oberon user interface is provided in the
standard setting.

Xi

Kurzfassung

Ethos ist zugleich der Name eines Projekts und der Name eines Systems. Das
Projekt zielt auf die Isolierung und Bestimmung geeigneter Designprinzipien
objektorientierter Betriebssysteme ab, wahrend das System diesen Prinzipien
folgend entworfen wurde. Als Fallstudie eines konkreten Betriebssystems
untermauert das System die grundlegenden Gedanken des Projekts.

Wesentliche Resultate des Projekts sind Generalisierungen bekannter
Designprinzipien objektorientierter Systeme. So werden “Model-View-
Controller” -artige Konzepte zum Carrier-Rider Trennungsprinzip verallge-
meinert, das eine breite Anwendung in der systematlschen Trennung von
Datenzugriff und Datenverwaltung findet. Weiter werden "Prototypes” zum
Directory Object Konzept verallgemeinert, um eine feine Kontrolle dber die
Anbindung einer Implementationsvariante an eine gegebene Abstraktion zu
ermoglichen. Schliesslich wird ein besonders leichtgewichtiges Konzept,
genannt Engine, zur Realisierung von preemption-basietten Verfahren
eingefiihrt, Das spezielle Merkmal von Englnes ist die gemeinsame Benutzung
eines Stacks.

Das Ethos-System, das vollstandig in der Sprache Oberon-2 implementiert
wurde, kann als evolutiondrer Nachfolger des Oberon-Systems verstanden
werden. Das Riickgrat von Ethos bildet eine streng typisierte Hierarchie von
Abstraktionen. Zu jeder Abstraktion gehort mindestens eine Standard-
implementierung - die gleichzeitige Verwendung mehrerer, alternativer
Implementierungen der selben Abstraktion ist jedoch stets moglich. Da die
Erweiterbarkeit und Austauschbarkeit von Abstraktionen im Ethos-System bis
auf die Ebene der eigentlichen Maschine hinab reicht, kann Ethos auch zum
Entwickeln von Prototyp-Implementierungen neuer Betriebssystemfunktionen
verwendet werden.

Ethos ist mit einem finalisierenden Garbage Collector ausgestattet, der
Identititsverzeichnisse direkt unterstlitzt. Das dynamische Laden und
Integrieren neuer Module in das laufende System ist jederzeit mdglich. Die
Konstruktion neuer Erweiterungen wird durch vorgezeichnete Rahmen-
konstruktionen (“Frameworks”) erleichtert. Als primires Medium fir alle
Benutzeraktivititen wird der als Bestandteil des Ethos-Systems entwickelte
Dokumenteneditor Write verwendet. (Mit Write wurde auch die vorliegende
Arbeit erstellt) Schliesslich gehort eine Weiterentwicklung der Oberon-
Benutzungsoberfliche zur Grundausstattung.

de to the Reader

If it were not for the standing danger of having one’s head talked off one's shoulders.
(D. Gerald, 1897)

_ This thesis covers a rather large scope. To reduce the prerequisites on the side
of the reader, introductions to principles of object-orientation and operating
systems are given, as far as relevant. The current understanding of
programming distinguishes programming in the small from programming in the
large. Object-orientation is a technique to deal with problems in the [atter
area. Operating systems are of a size and complexity that needs to be tackled
using such techniques. Parts of this thesis have text-book character, describing
the interaction of design principles and system design.

To ease the task of reading, the thesis has been organized to allow for
different pathways through its chapters. The preamble may serve for a brief
overview, perhaps followed by the conclusions (Chapter 4).

The main text is organized into three chapters. In Chapter 1 basic concepts
are explained. A discussion of specialized concepts follows in Chapter 2.
Chapter 3 - measured by number of pages and level of detail - is by far the
largest. It covers the case study Ethos, an object-oriented operating system that
has been designed and implemented to explore the concepts covered in the
first two chapters. While the path from Chapter 1 to Chapter 3 follows a
top-down approach, Chapter 3 itself describes the Ethos system in a
bottom-up fashion. This follows the idea that concepts are best explained
top-down, while systems — with upper parts depending on lower ones - are
better explained bottom-up. Extensive conclusions in Chapter 4 consider
lessons learned and point at possible directions of future research. The
commented Bibliography supports reference driven access.

A reader may use the forward thread through the thesis and read chapters
one to three in order, following the top-down development from concepts to
concrete examples. Otherwise, the first two chapters may be selectively
skipped, while concentrating on Chapter 3 in a first pass. This way the
concrete examples from the case study may serve as a reading aid when
returning to the first two chapters.

To stress the main train of thought, potentially distracting details have been formatted
as insets. This paragraph is an example for an inset. While such insets may contain
interesting information for the curious and patient reader, they may safely be skipped
when aiming at an understanding of the "big picture".

xiii

Preamble

There is no contradiction between finite extent, and infinite extensibleness.
(E. Caird, 1877)

In the following a brief overview of the thesis is given. It assumes a certain
familiarity with the field as it excludes explanations or definitions.

What has been achieved? The main objective of this thesis is two-fold: On the
one hand, it was tried to isolate and understand some important design
principles applicable when building an object-oriented operating system. On
the other hand, the applicability of such principles as well as of the
object-orientation principle in general was investigated by designing and
implementing the object-oriented operating system Ethos. Ethos is considered
a case study exhibiting interesting aspects, but intentionally neglecting others
that are less related to the topic of this thesis.

The search for design principles has been fruitful. A generalization of
several existing principles led to the new Carrier/Rider Separation design
principle. Carrier/Rider is both, a generalization of the Model/View concept
known from Smalltalk, and of the File/Rider concept found in the Oberon
system. Carriers and Riders separate building blocks supporting general forms
of data management and data access, respectively. Another important new
design principle are so-called Directory Objects, which can be seen as a
generalization of prototype objects.

The case study led to the successful design and implementation of Ethos,
which can be seen as an evolutionary successor of the Oberon system. Ethos
has been implemented entirely using the single prograrmming language
Oberon-2. Oberon-2 developed out of Oberon during the early stages of the
Ethos project. Experiences with Oberon-2 while implementing Ethos led to
several adjustments of the language.

Several algorithmic and structural methods have been developed or
originally combined in order to implement Ethos. Among the interesting ones
are: An integrated support for object finalization, identity directories, and
garbage collection; certain meta-programming facilities, e.g. used to support
generic object externalization and internalization; the flyweight pre-emption
concept of "engines” for certain realtime demands; a way to support various
naming models in file systems by means of extensions; and an interesting
extension model for document-based applications. The latter has also been
used to implement the Write editor for the Oberon system. Write has been
used to prepare this thesis.

Xiv

The Ethos project shows that it is feasible to support run-time extensibility
on all levels of a system when using a hybrid object-oriented programming
language forits implementation. By relying on a strongly typed language and a
statically checked type-safe implementation, reliance on hardware protection
support is mostly avoided. It is sometimes claimed that type safety can be a
burden when trying to implement something swiftly (“rapid prototyping").
However, the price paid was always found to be worth it: The resulting system
can be trusted and locating errors after extending the system was almost
always found to be easy.

What is new or different? As mentioned above, Ethos can be viewed as an
evolutionary successor of the Oberon system. This is most apparent when
looking at the user interface or the typical mode of operation: Both are almost
identical in Ethos, although improved in numerous ways. However, looking
behind the scenes the differences are obvious. Ethos is entirely built around
the concept of exchangeable implementations of defined abstractions. In
contrast, the low-level components of Oberon - including the file system -
are implemented as abstract data types, and are not extensible.

In Ethos the limits of extensibility are pushed down to the very machine
level. For example, it is possible to extend such basic components as the file
system, the module loader, or even the memory management. Such flexibility
is needed when developing new operating system services: Ethos allows to
work with experimental versions of operating system services just the same
way as it allows to work with experimental extensions on higher levels of the
system. Extensions on all levels can be installed and removed at run-time.

In a sense, the uniform treatment of extensible abstractions on all levels
blurs the distinction between application and operating system even more
than this was already the case in the Oberon system. The achieved flexibility
comes close to what is known from systems like Smalltalk, while providing
the safety and comprehensibility of a strongly typed and statically checked
language, and the efficiency of a fully compiled system.

What can be learned? Working on proper design principles as well as designing
and implementing a working operating system opened many problems and
some research areas. Some of the problems have been solved, some have
been isolated. Remaining problems of a more general nature can be seen as
entry points to new or still open research areas.

Among the lessons that have been leamed during the course of this work is
the conviction that hardware should be constructed to support safe
programming, but otherwise should stay out of the way. Safety in principle
cannot be achieved by hardware facilities alone, but must be left to proper
software models. For a system to be effectively and efficiently extensible, it is
important to guarantee safety properties on a fine granularity, well adjusted to

XY

the implemented abstractions. Languages with expressive and powerful type
systems are one step. Another one is the strict implementation of type-safety,
where loopholes should not exist.

Moving most (if not all) of the safety issues to the language and its
implementation is a significant burden for the language designer. However,
another lesson learned from the Ethos project comes in handy: A single,
sufficiently simple, orthogonal, yet powerful language can be used for all
purposes, from the implementation of device drivers, over applications
specific and system configuration purposes, up to userlevel scripting. While
Oberon-2 is not the "final language” achieving all these goals, it comes close
enough to demonstrate the feasibility of this approach.

1 Introduction

The theme of this thesis is Object-Orientation in Operating Systems. Hence,
this introduction aims at clarifying the terms Object-Orientation and
Operating System. As will become apparent, both terms are rather imprecise.
Instead of developing precise definitions, the important concepts related to
the two terms will be worked out and set into a context suitable for the
course of this thesis.

1.1 Basic Concepts of Object—Oriented Programming

Object-Orientation is currently (1992) one of the buzz-words in computer
science. Using such a word has the advantage of attracting attention, but the
apparent disadvantage of causing many, hardly controllable associations. To
provide some stable ground for the rest of the thesis, this section summarizes
the important aspects of object-orientation, as far as they are relevant to the
presented work. Building on the basic definitions, a motivation is given
showing that it is useful to build something in an object-oriented fashion.
Thereafter, remarks concerning the structure of object-oriented systems follow.
Finally, criteria are given for programming languages that are supposed to
support object-oriented programming.

1.1.1 What is Object-Orientation?

The concept of object-orientation can be captured as a list of more basic
concepts:

Object-Orientation :=
Encapsulation & Polymorphism & Late Binding [& Inheritance]

This "equation” is critical since no commonly accepted definition of
object-orientation exists (e.g. [Weg90]). However, all essentials are included
that should not be left out. (Code-)Inheritance is an exception: Its historical
relation to object-oriented languages makes it important, yet it can be
considered optional (see below). Instead of a philosophical discourse on the
meaning of terms like object, some concise characterizations of the essentials
are given. In this subsection, no attempt is made to motivate, judge, or justify

2

any of the mentioned concepts. Also, it is not claimed that all important
aspects of an object-oriented language are covered, as many otherwise
important aspects are not necessary to make a language object-oriented.

Encapsulation. The term object is based on the distinction of inside and
outside. An object is fully encapsulated if its state (inside) can be observed
and changed (from the outside) only by means of operations defined by the
object. Such operations are called methods, and invoking a method of an
object is termed sending a message to that object. The object is then called the
receiver of the message. Sometimes a set of objects should co-exist in a tight
manner, where the innards of each member of the set should be directly
accessible to the other members. Hence, it may be useful to encapsulate on a
coarser granularity than that of objects, e.g. on a class or module level.
(Classes are introduced below, a discussion on modules follows in Chapter 2.)

Polymorphism. A thing is called polymorphic if it can assume several forms, e.g.
a polymorphic variable may hold values of different types. If a parameter of an
operation is polymorphic, the operation is called polymorphic.
For operations, one has to distinguish between the types of formal and of actual
parameters, where the former types are those given in the signature declaration of the
operation, and the latter types are those of the arguments the operation is actually

applied to. In the following, formal parameters are simply called parameters, and actual
parameters are called arguments.

If the types of values that may be assigned to a variable are unrestricted (e.g.
Smalltalk [GR83]), the resulting polymorphism is called ad-hoc. In this case it
is in general undecidable whether a certain operation may be applied to a
variable - i.e. whether the operation is defined for the current value of the
variable. Hence, checking validity of operations when using ad-hoc
polymorphism requires run-time checking, and therefore the association of a
type tag with every value.

To increase the static semantics of a program, it is useful to declare fypes. A
type restricts the values that may be assigned to a particular variable or used
with a particular operation. In traditional languages (e.g. Modula-2 [Wir82]),
value types must exactly match variable or parameter types, making all
constructs monomorphic.

Often it is more useful to allow use of all value types that somehow
conform to a given type, where a type T7 conforms to a type T if values of type
T1 can be used wherever values of type T are expected. Languages like
Simula-67 [DMN68], Object-Pascal [Tes85], or Oberon [Wir88b] define a
partial ordering on types: For certain types (classes in Simula-67, objects in
Object-Pascal, records in Oberon), a type can be defined to be a direct subtype
of another type (its direct base type). The resulting polymorphism is called
inclusion polymorphism, as a variable of a certain type T may hold values that

are of type T or of any subtype of T.

The relation of true subtypes must be acyclic. If a type may have at most
one direct base type, the resulting ordering forms a forest (e.g. Oberon). if all
types (except one, having no base type) have exactly one direct base type the
ordering forms a tree. A general form of type conformance results if a type
may have multiple direct base types: Then the type graph can be completed to
form a general lattice (e.g. C++ [ES90]). Besides being enforced by declaration,
a language may define type conformance on the basis of signature subsets
(e.g. Quest [Car89]). For example, a Quest record type (a:A, b:B) is
automatically a subtype of the types (a:A) and (b:B) since it includes the latter
signatures.

Finally, the types of a cluster of polymorphic variables may be coupled ina
way that all values assigned to variables of such a cluster must be of the same
type. This restricted form of polymorphism is called genericity. Common
schemes to couple the types of variables are class templates (e.g. C++) or
generic modules (e.g. Ada [DoD80)).

Besides using inclusion polymorphism, polymorphic operations may be
constrained using more refined concepts. This is done by turning the type
constraints of parameters themselves into (type-)parameters of the operation,
e:g. fType::Kind; param:Type), where Type is a type-parameter of kind Kind and
param is a normal parameter of type Type. The resulting operation is said to
support parametric polymorphism, which can be split further into simple
(unquantified) parametric, bounded, and fbounded quantification [CCHx89]
[Har91]. Bounded quantification requires the type arguments to conform to a
certain given type, while f-bounded quantification additionally requires the
implementations of the type arguments to inherit from a certain class (see
below). General forms of parametric polymorphism are not available in most
of the current object-oriented languages. An example for a restricted form is
the like current construct present in Eiffel [Mey92). While being a topic of
ongoing research (e.g. [CHO92]), aspects of special forms of polymorphisms
are not pursued any further here.

The type of an operation B is said to conform to the type of another
operation A, if all in-parameters of B are of equal or more general types than
the corresponding parameters of A, and all out-parameters of B are of equal or
more special type than the corresponding parameters of A. Hence, specializing
(subtyping) an operation supports specializing its out-parameters, but requires
generalizing its in-parameters! If a parameter of a more specialized operation
has a more specialized type, the parameter is called covariant; if a parameter of
a more specialized operation has a more general type it is called contravariant.
Languages supporting forms of parametric polymorphism (e.g. Eiffel's like
current) are in danger of violating the contravariance rule of operator
conformance and hence risk being type-unsafe.

A simple example results from looking at special operators that are
functions of the form f: A - B. Another function defined as f': A’ > B’ can be
used wherever f could be used, if A <A’ (A’ is a generalization of A) and B¢ B
(B'is a specialization of B) holds, i.e. if f' can accept the domain of f and does
not exceed the range of f. Figure 1.1 (taken from [Car89]) illustrates the
situation.

fv

A B
A
Figure 1.1 — Covariance of function domains vs. Contravariance of function ranges.

From the variance rules for in- and out-parameters follows that the type of
in-out-parameters must not be varied when subtyping an operator.

Late Binding. Often a set of polymorphic operations exists, where each of the
operations could be applied to a given set of arguments. Then the selection of
the actual operation can be based on the values or types of the arguments.
For example, if two operations increment are defined for parameter types Real
and Integer, respectively, then for an argument of type /nteger the increment
for integers should be selected.

An operation returning another operation based on its arguments is
commonly termed a higherorder function. In the specific case, where an
operation is chosen at run-time, the deferred binding of the actual operation to
the point (time and locus) of invocation is called fate binding (or dynamic
binding).

If the argument types determine the choice of binding, the operation is
called type-driven. If a single, distinguished argument type is used for selection
purposes, the operation is called a method. If a language distinguishes
between types and classes (see below), operations may instead be class-driven.
This is the case in languages like Smalltalk, where types are not explicitly
present at all. If several argument types are evaluated for selection purposes,
the operation is called a multi-method. Multi-methods are found in CLOS
[DG87] or in Cecil {Cha92]. To respect object encapsulation, a method
should avoid direct side-effects in objects other than the receiver. Hence,
multi-methods should have a single, distinguished "receiver” parameter.

5

Since methods are chosen based on the type of their receiver, the receiver
type can change in a covariant way. This is important, as it allows a method to
directly operate on values of the appropriate subtype. When using
multi-methods, contravariance problems can be avoided by providing an
individual method implementation for the Cartesian product of all sets of
allowed argument types.

If the argument values are used to select the operation, the operation is
called value-driven. A typical form is the use of a procedure variable as part of
one of the arguments. Then the operation currently bound to the variable is
used at invocation time. Value-driven operations allow for a higher degree of
flexibility, but weaken the static properties of a given program. Examples for
value-driven approaches are the handlers in Oberon [WG89], or the method
slots in Self [US871.

Inheritance. The concept of inheritance is not well defined in the literature on
object-orientation. In the context of this thesis, inheritance is understood as
code inheritance or — synonymously — subclassing. The code that implements
the methods of a certain type is called a class. If a class builds on the code of
another class, the former is called a subclass of the latter, (Vice versa, the latter
is called a base class or a superclass of the former.) If a class may have at most
one base class, the relation is called single inheritance, otherwise multiple
inheritance. A typical form of subclassing is the automatic inclusion of all
methods implemented in the base classes. Such methods are called inherited.
A subclass may override an inherited method by providing a new
implementation for it, and the overriding method may invoke the overridden
method using a so-called super-call.

Certain languages replace the static subclassing hierarchy by a dynamic
relation between objects and parent objects. Then, an object forwards all
messages that it cannot fully handle to one of its parent objects.

For methods, the receiver may be used to invoke another method of the
same receiver. This way, the call-graph becomes recursive, where the recursion
structure is dynamic, depends on the class of the receiver, and is defined by
the inheritance structure of the participating classes. Since the receiver is often
termed self the resulting recursion is called selfrecursion (and the resulting
polymorphism f-bounded). If forwarding is used while preserving the identity
of the original receiver, the concept of delegation results. This is used in Self to
replace subclassing. Delegation can be simulated in languages not directly
supporting it [JZ91]. Also, subclassing and delegation can be simulated by
each other [Ste87].

Code inheritance is one of the most original aspects of early object-oriented
languages, but in this thesis it is not considered a defining feature of
object-orientation. Indeed, object-oriented languages exist that do not support
automatic code inheritance. For example, Oberon supports the object-otiented

style by resorting to object-driven operations, yet Oberon has no explicit
language features for classes or subclassing. Oberon-2 adds the option of
using type-driven operations, making it very similar to Simula-67,

Subtyping versus Subclassing. Types and subtyping are used to express
conformance relations, while classes and subclassing are used to package
implementations and express code inheritance relations. In principle, these
are two very different concepts, and examples are given in the literature that
show that sometimes the subclass and subtype hierarchies contradict each
other, if both are chosen to be optimal for the problem at hand [CHC90].

Still, many object-oriented languages with a strong typing scheme identify
subtyping with subclassing; examples are Simula-67 and Oberon-2. However,
languages exist that carefully separate types and classes; an example being
Emerald [Hut87](Bla91]. There, the idea is that a class implements a type, and
that the same class may implement many types. Likewise, a type may have
many alternative implementations in form of many classes implementing the
same type.

In a sense, the language Oberon separates types and classes, since multiple

implementations of an object-driven handler may exist, and one of them may be

chosen on a per-object basis. However, Oberon has no explicit constructs to describe
classes or subclassing, weakening its static expressiveness,

An issue related to the proper use of subtyping is the often cited is-a relation,
where it is meant that T is-a T if objects of type T’ can be used wherever type T
is expected. The is-a relation is stronger than the type conformance relation,
since it covers aspects that are not decidable, and hence cannot be specified
using a type system. However, a strong type system can help to express
significant parts of the is-a relation.

1.1.2 Why Build Something in an Object-Oriented Fashion?

Having described the various concepts related to object-orientation, the next
question to pursue is the relevance of the object-oriented approach: Why at
all is it useful to build something in an object-oriented fashion? This
subsection covers some of the general advantages, split into static, dynamic,
and evolutionary aspects. Additionally, extensibility is introduced as a major
motivation for object-orientation. However, object-orientation in the sense
defined in the previous subsection does not automatically guarantee
extensibility. Hence, a new term is defined, capturing the combination of
object-orientation and extensibility. Finally, a few warnings are given that hint
at the limits of object-orientation as a problem solving approach.

7

Static Aspect. Using polymorphic constructs one can often avoid explicit case
analysis, i.e. case switches distributed all over a program. Thereby a program
can be better organized and thus be easier to understand and to maintain.
The potential for static program checking is increased if polymorphisms are
used instead of scattered case switches. Also, new variants can be added later
without having to modify arbitrary portions of the system. The latter is a
prerequisite for extensible systems.

Dynamic Aspect. Late binding allows "old" code to invoke "new" one: A program
can invoke something that did not even exist when the program was
implemented. Hence, code can be made extensible without requiring changes
to the extended code. For a system to be safely extensible, an appropriate type
system is crucial.

Also, extending a system is not really possible if separate compilation (on
some level of granularity) is impossible. For example, the system-level
type-checking introduced in the current Eiffel version [Mey92] "solves” the
covariant typing loophole of previous Eiffel versions (cf. 1.1.1, [Co089]). As a
result, an Eiffel /ibrary may fail to type-check in the context of a program just
because a new library client has been added!

To capture the additional needs of an extensible system, the term Extensibly
Object-Oriented is introduced:

Extensibly Object-Orientation =
Object-Orientation & Separate Compilation & Type Safety

Requiring the possibility of separate compilation in principle imposes certain
restrictions on a programming language and its implementation. In general, it
requires that a compilation unit need not be re-compiled, just because a new
compilation unit has been added to the system.

In particular, a language that relies on global program analysis to
type-check a program does not fulfill the separate compilation requirement.
This is often overlooked in the literature when discussing typing issues of
object-oriented languages. Many "solutions” are based on type reconstruction,
where the compiler reconstructs type information not or only partially given by
the programmer (e.g. [PS90]). However, correct type reconstruction usually
requires global program analysis.

A particular implementation may of course use global analysis to improve code quality.
Likewise, run-time compilation techniques may be used (e.g. [DS841[HCU91]).
However, such optimizations must be carefully distinguished from the requirement of
separate compilation in principle. Also, the granularity of separate compilation (classes,
modules, etc.) is left to the language design.

8

Evolutionary Aspect. Whether a system is extensible in the sense defined above
can be tested easily: It must be possible to compile a new extension without
affecting the correctness of previously existing code. An important aspect that
is often neglected is the practical support for dynamic integration, i.e. the
possibility to indeed load and bind extensions at run-time, augmenting or
partially replacing existing functionality. A system supporting dynamic
integration can grow with the needs of its users. The recent addition and
increasing popularity of dynamic link libraries in traditional systems like UNIX
serves as an example.

If a system combines object-orientation with dynamic integration, it
supports extensible object-orientation: Previously loaded code uses dynamic
integration and binding to invoke code that was not even known when
loading the invoking code. (To support version updates, extensions should
also be removable at run-time, as is possible in Oberon [WG89]. This has
been "forgotten” in Cedar [Tei84] at the price of frequent re-booting.)

It has been noted above that the use of multi-methods may ease the
covariance problem [Cha92]. However, multi-methods contrast with dynamic
integration: If several extensions are created independently, then it is hard or
impossible to fill the resulting Cartesian product. For example, the
multi-method less(x y: Number) needs to be specialized in four different ways
when separately introducing Integer ¢ Number and Real ¢ Number, i.e. by
defining the /ess for all parameter types of the Cartesian product {Integer, Real}
x {Integer, Real} = {(Integer, Integen), (Integer, Real), (Real, Integer), (Real, Real)}.

Some Warnings. Object-orientation is not a panacea for the general problem of
programming, i.e. of designing and implementing programs solving specific
problems. In fact, there are many cases where the object-oriented approach
taken to an extreme destroys the comprehensibility of a system by introducing
a far to high degree of freedom: It seems unwise to make everything — every
"bit" — object-oriented.

1.1.3 Design Aspects of an Extensible Object-Oriented System

Assuming that a system should be implemented in an extensible
object-oriented (EQO) fashion: What is the best way to design it? This
subsection lists a few rather general principles, while more detailed
discussions may be found in Chapter 2.

Simplicity, There is no doubt about the power of simplicity. However, it is
difficult to find simple yet adequate designs even for small systems. For larger
systems, this is almost impossible if an ad-hoc approach is foliowed. instead,
certain design principles should be followed, and it may even be fruitful to

9

begin by creating new design principles to support the designing task. The
application of design principles helps in achieving uniform and orthogonal
designs. Both, uniformity and orthogonality are especially important when
designing an extensible system.

Extensibility. Making a system extensible introduces the requirement of
specifying duties, i.e. policies are needed to describe what providers and
clients must do and what they should not do. This is already a necessity when
using traditional library code. However, the heavy use of late binding in
object-oriented designs tends to cause ‘library” parts to invoke parts of
"clients”. Thus the interaction between existing parts and extensions becomes
much more complex, and a specification of what can be expected becomes
more important. A typical approach is "programming by contract’ [Mey88],
where the use of an interface is compared to the signing of a contract. A
“contract’ includes typing constraints, preconditions, postconditions, and
invariants. Formal contracts are beyond the scope of this thesis. However, the
issue of strong typing as a part of a proper specification is stressed repeatedly
when discussing particular problems.

Static Safety. To control the correctness of a program it is useful to allow for
static checking of as many aspects as possible. In principle, a program should
be checked against its complete specification. Since in the general case this is
undecidable, at least the important decidable aspects of the specification
should be isolated and checked statically. This is the main purpose of a type
system. in addition to static checking, an implementation may need to resort
to run-time checks to close security breaches in undecidable cases. Typical
examples are run-time index and NiL checks.

To strengthen the static checking, it is useful to allow to distinguish
between known (and therefore trusted) and client-added relationships. For
example, a language may support modules and impose stronger barriers
across module boundaries than it does inside of a module [Szy92b].

Often, static safety is ignored in favor of run-time hardware checks.
However, for a system supporting extensibility on all levels it is impossible to
do so: The degree of interaction between trusted and non-trusted parts of the
system becomes too fine-grained to use primitive concepts like memory
protection using a memory management unit.

Dynamic Safety. Run-time checks must be predictable. For example, a program
which is about to index an aray can guard the operation by checking the
index range. If such a guard is omitted and the index is out of range anyway, a
programming error is present and it is reasonable to have a run-time check
abort program execution. However, approaches exist where run-time checks
are in fact unpredictable. An example are "solutions” to the covariance
problem (1.1.1) based on added type guards in overriding methods. Due to

10

late binding, a type guard applied to a method parameter introduces a
runtime check within the callee that in general cannot be predicted at the
point of method invocation. (A possible way to solve this problem is sketched
in 44.)

Efficiency. Of course, a program needs to be effective, i.e. correct with respect
to its specifications. However, it also needs to be efficient, ie. free of
unnecessary activities in time and space. The most common myth about
efficiency is that the increasing efficiency of hardware makes the efficiency of
software less and less important. Simple studies of non-linear algorithmic
complexities suffice to reject this idea.

In the context of object-orientation the choice of the right granularity is
critical. While certain language implementations make it quite efficient to turmn
everything into an object, they rely on the fact that most fine-grained objects
are actually never extended. Thus, such systems effectively remove late
binding in most places where fine-grained objects are used. Consequentially,
designing a system to express everything — every "bit" — in terms of objects
puts a heavy burden on the language implementation.

Often - and certainly with cument languages and language
implementations - it is preferable to design a system using a more modest
object granularity. This is the basic motivation for supporting hybrid
object-oriented languages, where the distinction between object-oriented and
traditional parts is easy.

It is noteworthy that the efficient implementations of pure object-oriented languages —
where "efficient” is still only 50% of the performance achieved with more traditional
languages [CU91] — even rely on the assumption that certain parts of the system are
never extended! For example, [DS84] assumes that basic control structures — which in
Smalitalk are expressed in terms of message invocations — are never overridden and
thus can be compiled into efficient code. Other approaches, like the one for Self
[CU21] tend to consume enormous amounts of memory.

114 What an EOO Supporting Language Should Provide

The introduction of the term Extensibly Object-Oriented (EOQ) leads to the
question what a language should provide to support EOQO. In the following
various language requirements are derived.

Extensibility. The definition of EOO requires the language to support separate
compilation in principle. Usually, it cannot be expected this is done on an
arbitrarily fine granularity. For examples, type definitions standing in a cyclic
relationship usually cannot be compiled separately. Thus, a useful unit of
compilation need be defined. Typically, modules are introduced into the

M

language and are explicitly required to be separately compilable [Szy92b].

Expression of Strong Constraints, For an extensible system the expression of
constraints is important: Especially on the level of interfaces open to arbitrary
extensions, it must be possible to precisely express constraints. A long way
towards this goal can be gone with a sufficiently strong type system. (The
meaning of "sufficiently strong” is an open research issue.) A type system
should be decidable: A type requiring an integer (all operations allowed) to be
prime does not fulfill this condition. Expressing minor details using a verbose
type system should be avoided. Doing so subverts the intention that a well
typed interface should be easy to read and easy to understand, as it forms an
important part of a system's documentation. Especially in the OO context, it is
not yet clear what constraints should be expressible within a type system.

Safety. Having a strong and decidable type system alone does not improve
program quality. It is important that all type assertions are checked, i.e. that
the language implementation is type-safe. Additionally, a few assertions are
important yet undecidable. For example, an array should never be indexed
outside of its index bounds, a pointer should never be dereferenced when it is
NIL, and a type guard should only be passed if the guarded object is of an
appropriate (run-time dependent) type. A certain amount of run-time checking
is thus required. In particular cases, program analysis may allow for
optimization of these. However, analysis must be limited to the granularity of
compilation units to maintain the requirement of separate compilability in
principle.

Efficiency. Using an object-oriented approach on all levels of abstraction can
become quite costly. Even moderm and complex compilation techniques (e.g.
[CU91]) cause programs to execute only about half as fast as similar
programs written in a style that is not purely object-oriented. Another issue is
the static semantics that a program has: If everything is — at least in principle
— based on object abstractions and late binding, then the static meaning of
program fragments gets very weak. Hence, efficiency and comprehensibility
reasons stand for a more modest approach, where object-orientation is
deliberately used by the designer of a program to indicate planned and
intentional degrees of freedom.

Often, it is claimed that the structural advantages of the object-oriented
approach dominate the weakening of static semantics. In other words, the
grouping of data structures with associated operations is felt important
enough to use object-oriented structures even in the cases where static
binding can be used. The idea is, that the compiler can detect such cases and
generate static calls anyway. However, this contrasts strongly with the
requirement for extensibility, as a separately compilable language cannot be
implemented to remove late bindings crossing compilation units. For

12

example, once a method definition gets exported, it is never known whether
an extension added later overrides the method, and thus requires late binding
of invocations of this method. (However, run-time compilation techniques
together with invalidation of generated code upon integration of new
extensions can be used to optimize globally. The result is a significant
increase in compiler and system complexity.)

Thus, the argument that late binding can be statically optimized by the
compiler is only true for implementations that are fully encapsulated within a
compilation unit, e.g. a module. Such encapsulated implementations are not
extensible, and the advantage of using object-oriented approaches to structure
the contents of a single module is relatively small. Or, to put it differently, if
the structuring requirements are such that object-orientation seems to help,
the language should provide for adequate static structuring schemes usable
within, say, a module. Of course, such structures can well be similar to
classes, except that the programmer makes the intended static binding explicit
instead of relying on a smart compiler. (In C++, static binding of methods is
even the default!)

To conclude, it seems unwise to express evety "bit" in terms of objects.
instead, the nature of objects, i.e. the separation of inside and outside, should
be kept in mind. The designer has to trade off, whether a certain abstraction
requires to be encapsulated into a class, instead being expressed as an
abstract data type, an abstract data structure, or even not being encapsulated
at all. The language can support this design decision by providing a spectrum
of abstraction tools that make the intended degree of freedom (of abstraction)
explicit.

1.2 What is an Operating System?

The term Operating System is to be understood in an historical framework. The
first computing systems loaded a single program at a time, executed it to its
completion, and produced some output. The loading of a program and the
return of the output to the programmer was done by human operators. With
the introduction of batch processing setvices this was automated by means of
a constantly loaded monitor program, which in turn loaded and executed a
sequence (a batch) of programs,

Later, the demand for a machine per user grew, while prohibitive hardware
costs made it impossible to install enough machines. To overcome this i
situation time-sharing services were introduced, based on a multi-programming
model: Each user was provided with the illusion of working on a private
(vitual) machine of his own. This significantly increased the functional
requirements of the rather primitive monitoring program: It now had to

13

allocate shared resources (primary and secondary memory, input/output
devices) and to schedule programs. The resulting control programs were
termed Operating Systems, and they had to solve a bunch of complicated
problems, including those related to deadlocks and starvation. Instead of
going into the details here, the reader is refered the extensive literature on
classical operating system problems and designs (e.g. [Dij68][PS83][Tan87]
[Tan92D).

For protection reasons the traditional operating systems were entirely
separated from the application programs they executed. On modem
workstations, assigned to individual users, this need not be so. In fact, the
definition of what belongs to an operating system and what not, got more
and more blurred. This section looks at various OS models and the
characteristics of the resulting operating systems.

1.21 Older Operating System Models

Traditional (time-sharing) operating systems have to guarantee inter-user
protection, where different users may have different access rights
(permissions) to the computing resources. An especially successful
architecture for such systems was originally proposed by Dijkstra [Dij68]: The
separation of the design into fayers, where a layer is restricted to the
abstractions and services provided by lower layers. For example, device
specific code (often called drivers) was located in the lowest layers, protecting
critical resources against misuse.

The layered architecture suggests that everything up to a certain layer
belongs to the operating system. This leads to an implicit definition of what
an operating system is, i.e. by exclusion of things that an application cannot
do. More advanced systems allow extensions of OS layers to be installed, e.g.
new device drivers. However, even if this is possible, such extensions are
placed on the level of a certain layer and hence it is still clear whether a
particular extension extends the OS or an application.

The layered design is easily supported by the hardware. Even if the language
implementation is unsafe, or if assembler programming is permitted, it is
possible to inform the hardware about the protection level a certain program is
executing in. Then, memory areas containing code and data can be protected
against access from within programs executing on the wrong protection level.
It is common to support just two levels termed user mode and supervisor
mode. More refined schemes support protection rings, ie. multiple levels
arranged under a total ordering.

The interrelation of layered software and hardware protection levels allows
for another definition of the traditional operating system term: Everything

14

executing in a level of sufficient privilege belongs to the operating system.
This is easy to understand but somewhat discomforting, as it relates the
definition to certain hardware facilities.

1.2.2 Open Operating System Models

An operating system is a collection of things that don't fit into a language. There shouldn‘t be one.
(Daniel H. H. Ingalls [ing8&1])

In an open system extensions should be possible on all levels. To enable
extensions all interfaces of abstractions should be available, and all
abstractions should be extensible. If this is caried through to the lowest
levels, the distinction between OS services and other services gets blurred.
Several alternatives follow:

A. In an open system, everything belongs to the OS - the notions of
"application” and "operating system" vanish.

B. The OS shrinks to a minimal kemel, i.e. almost everything becomes
"application’.

C. A less strict and more pragmatic position is assumed and thus a
blurred definition is accepted.

Obviously, alternative A is not very helpful. B follows the architecture oriented
approach, but somehow predicts the OS to vanish in the future. Thus, C is
followed to have a name for the things discussed. To arrive at a pragmatic
characterization of "OS’, several approaches can be tried.

First trial: The OS manages all shared resources, i.e. the ones used by more
than one application. What precisely is a resource? If abstract services are
included, this definition makes every shared piece of code part of the OS,
including all libraries. If resource means hardware resource, then higher-level
abstractions that traditionally belong to an OS, are excluded. For example,
inter-program communication mechanisms are entirely abstract, yet
traditionally belong to the OS,

Second trial (due to Josef Templ): The OS is what is there after booting the
machine. This is perhaps the most unprecise definition, as it gets shaky as
soon as startup configuration mechanisms exist. Then, everything that
happens to be part of the current startup configuration is part of the OS,

Third trial: The OS provides a virtual machine view hiding away hardware
details. This definition gets close to altemative B above. All that remains
within the OS is the minimal software required to complete the basic
hardware. Often, such an "OS” is termed micro-kernel [Gie90] and all that it
contains are means to safely implement most OS functionality on the

15

application level. If the definition of operating systems is reduced to that of
micro-kernels, the OS gets emptied out by pushing most problems into the
application domain.

For the scope of this thesis the following simple compromise is pursued:

An operating system is a collection of application-independent abstractions and
services that are of general use to applications,

Of course, the term "of general use” is fuzzy and refers to the typical use of the
complete system. For example, a math library that is part of the average
installation and that is used by many applications, will be considered part of
the OS.

As a general conclusion it may be added that the strict distinction between
OS and application is not wanted in the setting of fully extensible systems.
Introducing the term operating system anyway is helpful when a name is
needed for "the part of the average installation of a system that supports most
of its typical uses”, as this is the part that creates the overall flavor of the
system.

17

2 Object-Orientation in Operating Systems

The two primary notions isolated in the introduction are Extensible
Object-Oriented programming and Operating System. In the following the
combination of these two terms is motivated (2.1) and a short survey of other
work is given (2.2).

For large systems the design should follow a small set of generally
applicable design principles. This helps to avoid bundling a large number of
ad-hoc solutions into a heterogeneous system. Instead, clearly arranged
systems can be built that are easy to understand and reasonably easy to
maintain once the underlying principles are understood. As the whole idea of
bringing object-orientation into operating systems is an increase of flexibility
and extensibility, the application of general design principles becomes even
more important. For this thesis, a significant portion of the work went into the
development of a set of sufficiently powerful design principles (2.3).

Following the general issues of design principles, more concrete details on
how to structure an object-oriented operating system will be discussed (2.4).
This covers two levels of system structure: Modularization and Type Hierarchy.

To conclude this chapter, specific operating system features required to
support Extensible Object-Orientation are treated (2.5), and other, more
traditional operating system features are considered (2.6).

2.1 Motivation and Goals

211 Two Orthogonal Possibilities

Object-orientation in operating systems can be considered for two rather
distinct purposes. On the one hand, an operating system, like any other
program, may itself be written in an object-oriented fashion (2.1.2). On the
other hand, an operating system can be designed to smoothly support
applications written in an object-otiented fashion. For an open operating
system, i.e. one which can be extended and adopted to varying needs, the
distinction between supporting object-orientation and being object-oriented
becomes blurred (2.1.3). Finally, certain facilities are required to effectively
support object-oriented applications (2.1.4).

18

2.1.2 Why Write a Program (an OS) in an EOO fashion?

The simplest reason for writing a program in an object-oriented fashion is the
possibility to improve system structure. Of course, this is already possible by
resorting to abstract data types (ADT). However, it is important to understand
that the object-oriented approach is a superset of the ADT approach, in that a
program implemented using ADT's can readily and automatically be converted
into one using objects. The transformed program will contain a class
definition for each ADT, but will not use any inheritance or subtyping
relationships.

By adding a type hierarchy the various "ADT's” can be set into relation. This
allows for uniform treatment of variants: By coding generic parts of the
program to operate on a common base type, redundant coding can be
avoided. In a certain sense subtyping replaces the need for variant types
(sometimes called, union types). However, the set of variants need not be
known when coding the handling of the base type. New variants (subtypes)
can be added freely and at any time.

Finally, if case specific operations need be executed, instead of coding a
case switch which explicitly distinguishes between possible variants, bound
procedures are used. The case analysis is then moved to the dynamic binding
and the set of variants is left open.

The object-oriented style adds an important possibility. As the actual variants
of a certain base type need never be fixed, it becomes possible to dynamically
load and bind new variants at run-time. This is possible, if code is written in a
way that avoids explicit type case analysis and instead resorts to late binding:
The newly loaded implementation merely adds a new variant to the known
base type and introduces objects of the new type. Old code continues to -
work, as it will refer to the known base type of the new objects, only. Dynamic
binding then takes care of dispatching control to the implementation of the
new type variant.

Subtyping leaves the set of variants (subtypes) of a base type open. Also,
and equally important, it leaves the number of subvariant levels open: With
every newly introduced type it becomes possible to define subtypes of it
Hence, having subvariants of variants is possible at any time.

The potential opened by allowing to add subtypes (and their
implementations) at run-time is only explorable if programs can be split into
separately compiled parts. This point is often underestimated. Therefore, in .
this thesis, it was decided to distinguish between object-orientation and '
extensible object-orientation. A program written in an extensible
object-oriented fashion is never complete in the sense that extensions are
always to be expected. Therefore, the EQO style has severe consequences for

19

the programming style adopted: In order to be safe, an EOO program has to
draw strong boundaries between what may be changed by an extension and
what has to stay untouched. As an EOO program can never be considered
complete, resorting to global checking techniques to introduce safety as an
afterthought is doomed to fail.

To conclude, using the extensible object-oriented style a system can be built
in an evolutionary fashion: Starting with a small initial system more
functionality is added when needed. Further functionality may even be added
to an already running system without distuption of setvice.

21.3 Why should an OS Support EOO Programming?

For an operating system extensions are vital: Every application loaded and
executed by a traditional OS is just an extension of the OS itself. Hence, itis a
conceptually small step to consider extensions on all levels of an operating
system. However, the traditional program oriented approach is not robust
enough to allow for that. Hence, traditional OS's drew a strong safety barrier
between their intrinsic functions and those implemented in an application
program. For true extensions to be applied to inner parts of an OS, a clean
and safe integration of extensions is required. The extensible object-oriented
style is a way in this direction.

If it is accepted that it makes sense to structure an OS in an extensible
object-oriented way, then the question follows whether or not an OS should
also be enriched to support EOO programming. For a traditional operating
system, this is indeed an option. (For example, several objectoriented
operating systems exist that implement the UNIX kernel interface, thus not
supporting EOO programming of OS clients) For an extensible
object-oriented operating system it is not an option! In fact, an extensible
object-oriented OS must support EOO programming, as the extensions of the
OS itself are supposed to be implemented in the EOO way. Since extensions
of the OS should be executed under the OS the EOO support is indeed
mandatory.

While the argumentation above is imprecise in a technical sense, the next
section will clarify the situation by analyzing what it means to support EOO
programming.

20

214 What means "Supporting EOO Programming’ for an OS?

What follows is a brief investigation what supporting EOO programming
means for an OS. Details of how to implement such supportive facilities are
ignored (cf. 2.5).

Generic Object Manipulation. The idea of object-oriented programming is
centered around the term object. An object is meant to encapsulate part of a
system's state space and to provide a set of operations in order to manipulate
its state. The use of objects becomes particularly powerful, if generic handling
of objects of a common base type is possible. Most implementations. of
generic operations on objects are expected to be provided by the extensions.
For example, if a base type T requires an operation PrintOn, then each
implementation of a subtype of T is expected to provide a suitable
implementation of PrintOn. Then, a generic piece of code may invoke PrintOn
on some object referred to by a variable x of base type T. This causes
invocation of the proper implementation associated with the actual type of
the object referred to by x.

For some operations genericity requires system support, though. This is

generally the case when the machine-dependent representation of objects is
involved. Typical examples are the generic copying of objects, and the generic
mapping (e.g. loading and storing) of objects to and from sequentialized
representations (e.g. files).
‘While an object’s implementation can take care of copying or mapping its
components, it cannot do so for its class membership. To do so, an object
needs run-time access to information about its own class. This can be
achieved by adding certain meta-programming facilities to a system or a
language: Facilities that allow a program to acquire and, in principle, to
change information about its own execution environment.

The dilemma becomes apparent when consideting loading an object from
an external representation, say a file. Since the object is not yet available, its
own implementation cannot help in doing the first step: Finding out what
class implements the object. In a traditional system the variants to be
expected on the file are known in advance and a simple coding scheme plus
a case switch suffice. If the system is extensible this does no longer work. The
variants to be expected cannot be covered by a central loading seivice. Instead,
a more general service is required that can map class information (e.g. the
class name) to a unique external representation, and that can take such a
representation to retrieve the class again. Finally, it must be possible to create
a new instance of the retrieved class.

21

Dynamic Loading. To make use of extensible object-orientation, it is crucial to
be able to load extensions on demand. At first glance, this seems orthogonal
to the generic object support discussed above. However, this is not so. The
example of loading an object from a file is again helpful to understand this
_interrelation. Before internalizing the object it is necessary to read the extemal
representation of the class implementing the object. If the class (it's
implementation) is present in the system, a new instance of that class is
created and the class controls the actual object loading. Things are more
complicated if the class is not present. Then, the system has to try to
dynamically load and link the implementation of the missing class. If dynamic
loading is not supported, a system must be configured to have all class
implementations available before trying to load an object from some file! This
stands in sharp contrast to the requirement that the system should be
extensible and grow to its needs.

Dynamic loading and system extensibility require separate compilation;
otherwise the loadable extensions must have been compiled before running
the system at all. For an operating system used to support program
development the latter is unacceptable. Hence, the dynamic loading facility is
likely to be based on the units of separate compilation, e.g. modules. (This will
be discussed in more detail in section 2.5.2.)

Garbage Collection. If a system grows by means of dynamic loading of
extensions it becomes hard to maintain central knowledge of all references
that exist for a particular object. Even worse, unless the used programming
language introduces severe restrictions on the passing and copying of
references, it becomes impossible for the programmer to keep track of
references in a safe way. Either an object has to be hidden from extensions,
making its whole purpose of being an object questionable. Or the space
allocated to the object can never be reclaimed without risking the existence of
dangling pointers, i.e. references that survived the object deallocation.

A possibility is to explicitly overload the reference-creating operations (as
may be done when using C++). Then, the risk of deallocating an object while
references remain can be avoided, but instead the risk of having memory leaks
is introduced, i.e. it becomes possible and often unavoidable that object
deallocation is not triggered, although the object became unreachable. (One
should note that an object becomes unreachable either if no reference to it
remains, or if all remaining references are located in unreachable objects. It is
well possible to have circular references among objects that jointly became
unreachable.)

In other words, for a dynamically extensible system explicit deallocation is
not feasible. Since finite memory resources force space to be reclaimed
eventually, the only viable alternative is to introduce garbage collection, i.e. a
mechanism to safely determine if an object became unreachable, and to

22

deallocate it thereafter. This point is very important. Often, garbage collection
is considered a matter of convenience, relieving the programmer from the
error-prone task of explicitly deallocating memory. While this is a true aspect,
it is not the whole truth. Far more important is the impossibility for the
programmer to solve this problem in a safe way when programming a
dynamically extensible system.

Garbage collection in turn is possible only in an environment with centralized resource
management. For example, it must be clear where to look for references to objects, and
it must be clear where to look for unreachable objects.

Finalization. Another aspect closely related to garbage collection is object
finalization. Object finalization refers to the possibility for an object to take
some final actions just before it gets removed by the garbage collector. As the
time of removal cannot be determined by the programmer (it depends on the
state of the extensible system and its interaction with the used garbage
collection strategy), an object implementation cannot control the state of
some external resource in a safe way. For example, an object may encapsulate
the state of an external device, say one of several attached lasers. Then, before
being removed from the system, the object needs to ensure certain safety
conditions, e.g. by turning the laser off. Another example is an object
representing the state of a file provided by some (stateful) remote file system.
To release resources it is assumed that the object needs to close the remote
file eventually. Again, as for the laser example, the object could provide an
appropriate method for this purpose, but it cannot guarantee that the method
gets invoked before the object becomes unreachable.

A third example deals with identity directories. Often it is useful to have
some directory service return the same object repeatedly if the same search key
is presented repeatedly. For example, to preserve space a font directory should
return the same rastered font whenever the same name is presented. An
identity directory implementation maintains the set of objects retrieved so far,
and consults this set whenever a new request is made. The problem is that
such a set interacts badly with garbage collection: Since the directory has no
means to decide when an object in its set became otherwise unreachable, i.e.
no references besides the one from the set structure remain, it cannot remove
objects from the set. Therefore, the garbage collector will never collect such
objects again. While this problem cannot be solved by means of finalization it
is closely related to it: The solution requires an action (set exclusion) to be
performed when all but one particular reference to an object vanished. This
will become apparent in the section introducing the finalizing garbage !
collector facility (2.5.3).

23

Exception Handling. Exceptions are unexpected behaviors observed when
invoking a certain operation. In most cases exceptions can {and should) be
avoided. For example, instead of performing the operation

x=y/z

- and therefore risking to raise a division-by-zero exception, a guard should be
added:

ifz#0->x:=y/z[z=0-..fi
where the case z=0 is caught and dealt with separately. This is possible
whenever the guard is feasible. However, this assumption may not hold in
certain cases. For example, when using a matrix inversion operation to
compute A-1, the check whether JAI*0 holds is almost as expensive to
compute as is the operation A-1 itself. In such a case, instead of coding

ifJAl]=0->B:=A1[]]A|=0~..fi
it may be better to write

Invert(A, B, res); ifres =0 > skip [res # 0 —» .. fi
where res is a result status of the operation Invert.

Hence, exceptions can be avoided in all cases considered so far. A system
that discovers an exception anyway should therefore terminate the offending
program, as the occurrence of an exception is considered a programming
error. However, care must be taken when generalizing this result to extensible
systems. What does it mean to prevent exception in the following case:

x.f
where x is a variable of some type T that defines a type-bound procedure f?
As the actual class of the object referenced by x is statically unknown, the
appropriate guard for this operation is unknown too. In principle, the
definition of 7 should include the semantics defined for f. Then the caller can
supply appropriate guards to guarantee preconditions of f and the
implementation of f can take additional precautions and perhaps return some
result status. Hence, it seems that the situation is the same as before, and
exceptions that occur anyway should lead to program termination.

The rationale for forcing program termination upon exception detection
was the concept that a program causing an exception is considered
erroneous. This rigor implies that an extensible system is erroneous if any of
its extensions are erroneous! For an extensible operating system, this means
that the operating system is erroneous if any of its extensions, eg.
applications, is erroneous. This, of course, is intolerable, as the operating
system should definitely not be terminated if an exception in one of the
dynamically loaded extensions occurs. Instead, it should be possible to force
the system back into a consistent state by taking control from the erroneous
extension without leaving inconsistent states in other parts of the system.
Hence, for an extensible system, some sort of exception handling is crucial.

24

2.2 Otherwork

Before going into deeper details, a short survey of other work may be in order.
Since the thesis text contains references to the literature whenever some
concept is introduced, this section will be kept short. Also, it is not expected
to cover all existing systems that may somehow relate to this work. The
systems that will be considered have been selected to cover a broad range of
approaches and to isolate the main differences to approaches taken in the
Ethos project. Two classes of systems are looked at: Systems that are
object-oriented or support object-orientation, and systems that are extensible.

Cedar, Oberon. Cedar [Tei84] is the conceptual predecessor of the Oberon
system [WG89][WG92] and thereby the Ethos system. Cedar has been
developed at the Xerox Palo Alto Research Center (Xerox PARC), California. Its
highlights are extensibility on an application level, a relatively high degree of
inter-application integration using a common model of texts, a novel user
interface based on tiled windows, and the use of the strongly typed language
Cedar [Lam83] that evolved out of Mesa [MMS79). However, the more
operating system specific features, like support for multiple processes and
inter-process communication are rather traditional, as is the type system of
Cedar, which does not support true subtyping. Both led to an increase in
complexity and a decrease in comprehensibility of the Cedar system.

Oberon in tum follows the most important ideas of the Cedar user
interface, while introducing an entirely different programming model. While
Cedar is based on multiple processes, each executing for some application,
Oberon is a single-threaded system with no notion of applications. Instead,
the whole Oberon system can be considered a single application that is
extensible to-a certain degree. Also, Oberon is based on the language Oberon
[Wir88b][RW92], which fully supports subtyping. Ethos carries these ideas
through, but largely increases the potential for extensibility. Ethos is
implemented using the language Oberon-2 [MW91].

Smalltalk. The classical extensible object-oriented system. Building on the
experience with fully integrated Lisp Systems, the Smalltalk designers dropped
the separation of operating system and application [Gol83]. Instead, Smalltalk
is based on a virtual machine predefining some primitives that in tum are
used to construct a running, interactive system. The language Smalltalk is
quite small and relies on a large standard class library [GR83]. The set of all
class definitions and all objects coexisting in a system at a time is called the
Smalltalk image. The system is programmed and used by successively
extending the image. Extensions and modifications to all parts of the system
can be made at any time.

The basic philosophy is that source code of the system is always available.

25

This is more important than it might appear. The system is large and rather
complex. Everything is modeled using objects communicating by means of
messages, but the language has no manifest types. Hence expressions have no
static meaning, and almost all programming errors end in a run-time error of
the kind "message not understood". Although it is considered good
programming practice to use identifiers like aninteger to somehow add type
information by convention, the system is hard to understand without
browsing through its source code. Hence, having all source code at hand is a
must for the Smalltalk programmer: It largely replaces documentation!

Other than Smalltalk, the Ethos project is based on the strongly typed and
compiled language Oberon-2. Like Modula-2 and Oberon, Oberon-2 provides
modules for system structuring. This was found helpful to avoid clutter; even
more, an argument can be made that a useful language should provide both,
modules and classes [Szy92b].

Choices. Choices is a research project at the University of lllinois at
Urbana-Champaign [CRI87]. From the outside Choices mimics the interfaces
of various standard operating systems, e.g. MS/DOS or UNIX. However, the
components of Choices are radically different in following object-oriented
frameworks to achieve easily configurable and adaptable designs [CJMx%89]. In
this context, a framework is defined as the common design of (a family of)
similar applications or subsystems [JF88]. If such a design can be expressed
by means of classes, then specialization by means of subclassing can be used
to derive a concrete design adapted to special needs. The framework that has
been explored most thoroughly in the Choices project is that of the file
system [MCRx89][Mad91]. The file system framework has been used
successfully to implement a large variety of file systems on different machines.

A major difference between Choices and Ethos is that Choices looks like an
ordinary OS, but is structured in an object-oriented fashion inside. Ethos, on
the other hand does not try to look like any existing OS (except for
resembling the Oberon system), and is structured in an object-otiented
fashion from the outside, Several components of the Ethos system have not
been structured in an object-oriented fashion, but instead fully encapsulated
into single, closed modules. Using Choices-like frameworks to re-engineer
such modules would be useful.

Choices has been implemented using C++, hence aiming at a performance
comparable to Ethos and certainly superior to Smalltalk. Choices suffers
significantly from the lack of run-time type information and garbage collection
support in C++. As admitted by the designers of Choices [Cam92], the
inability of changing the C++ compiler to support run-time type information
was quite a hindrance. (The Choices project is partially funded by the industry,
strong compatibility requirements — with the mistakes of the past ~ where
thus mandatory.)

uds. The Clouds operating system resulted from a research project at .
'édrgia Institute of Technology [DLA88]. Clouds is object-oriented and
_concentrates on the support for refiable objects in low levels of the system. The
_key idea is to provide automatic means for faulttolerance and fault-recovery
on the level of objects [Spa86]. ‘
. Clouds objects tend to be large-grained, as each executes in its own
. address space. In this sense, a Clouds object is closer to a UNIX process than
to Ethos objects. The Ethos system contains no provisions for fault-tolerance
based on distribution. Extensions in this direction would be interesting to
pursue, in which case the meta-programming mechanisms present in Ethos
(3.4.3) are expected to be helpful.

Guide/Commandos. The Commandos system [MG89] emerged as part of a
European ESPRIT project and is the result of a multi-institutional
collaboration. In Commandos all objects reside within one or more
address-spaces, called domains. Each Commandos domain may span multiple
machines. Accessing an object on a remote machine causes the domain
holding the requesting object to extend to the remote machine and include
the requested object. This way object communication over machine
boundaties is entirely transparent without requiring all objects to reside within
a single world-wide address space.

Commandos exists in tight combination with the programming language
Guide [KMNx90]. The tight coupling of system and language makes it
comparable to systems like Smalltalk, Oberon, or Ethos. As mentioned above,
Ethos does not yet cover aspects of distribution. The Commandos/Guide
approach would be one possible way to add support for distributed
architectures to Ethos, possibly running a complete Ethos system in each
Commandos-like domain.

SOS. The SOS system [Sha89] started as an application and language
independent layer supporting creation, deletion, migration, storage,
localization, and invocation of objects. Due to the sufficiently general
approach this layer can be seen as an object-oriented operating system. SOS
has been developed at the Institut National de Recherche en Informatique et
en Automatique (INRIA), France, as part of the European ESPRIT project
SOMIW. SOS is written in C++ and prototyped on top of UNIX. The key
concept of SOS are fragmented objects, i.e. objects residing on multiple
machines at the same time. A fragmented object may internally be aware of
the distribution to allow for optimizations, while from the outside (i.e. as seen
from object clients), fragmentation is transparent. "

SOS concentrates on the support for object-orientation. Implementations of
SOS sewvices are based on traditional (UNIX) systems and are not
object-oriented, although this could be changed by re-implementing SOS for

27

bare machines. The fragmented object approach is another way that could be
explored when adding support for distributed systems to Ethos.

Amoeba. Amoeba is a distributed operating system based on objects
communicating using remote procedure calls (RPCs). Amoeba is the outcome
of a research project started at the Vrije Universiteit Amsterdam, Netherlands
[MT86], now spanning several other universities. A key idea in Amoeba is the
location transparency of objects by means of system-provided name services
and access via RPC. Protection against illegal invocations is achieved using
encrypted capabilities [TMR86]. Amoeba itself is language independent and
has been implemented to execute on bare machines or under host operating
systems like UNIX,

Other than many of the systems described in this section, Amoeba has
been used to support many users, and has proved to perform efficiently
[RST89]. The interesting concept of hiding remote invocations by means of
remote procedure calls and at the same time introducing protection by means
of capabilities might be yet another way to add distribution support to Ethos.

Mach/NextStep. The Mach project [ABBx86][RBF%89] at Caregie-Mellon
University, Pittsburgh, Pennsylvania, aimed at minimizing the operating system
subset that must stay in a protected kernel. The resulting micro-kernel basically
contains address space and thread management, as well as inter-thread
communication by message passing. Thereby the kernel is limited to the
features required to establish protection barrers plus safe communication
across such barriers. Otherwise, the Mach system uses user-level servers to
provide for virtual memory (paging), file systems, network protocols, and the
like. .

NextStep is a userinterface framework and toolkit built on top of Mach
[Web89] that is fully object-oriented and implemented using Objective-C
[Cox87]. However, NextStep has its limits as it cannot fully hide the fact that
the underlying UNIXdike (Mach-based) operating system is not
object-oriented and not really geared to support object-orientation. For
example, there is no concept of garbage collection on the level of the
operating system - data structures shared by multiple processes are thus not
collectable. Also, the Mach message mechanism is not transparently
integrated, as it differs largely from the finer grained message mechanism
used for the communication between Objective-C objects.

The Mach micro-kernel would be an interesting extension to the Ethos
kernel, allowing for a more rigid protection mechanism. However, other
protection mechanisms going in conjunction with support for distribution
may be more adequate. Also, it is not clear that the Mach micro-kernel is
indeed minimal (it still contains quite some functionality). The NextStep
framework parallels the userinterface framework found in Ethos, but is

28

significantly richer. In principle, there is no reason why such a richer set of
building blocks cannot be provided for Ethos in the future.

V Kernel. The V System has been developed in the course of a research project
[Che84] at Stanford University, California. Similar to Mach, but oriented
towards transparent distribution, the V kernel contains only a few standard
features: A process abstraction with operations for interprocess
communication, process management, and memory management. Other than
Mach, V also contains access to raw devices, like disk drives. Higherlevel
abstractions, e.g. a UNIX-like file system, are then built as standard services
running in user mode. Coupling service modules using the
distribution-transparent communication facilities of the V kernel a distributed
system can be formed.

The V project was patticularly concerned with performance of remote
operations; one of the interesting results is the development of the VMTP
transport protocol [Che86]. These results could be useful when considering a
kernel to be used for Ethos that masks aspects of distribution. However, it is
not clear whether this approach of transparency at a very low level carries
through to more demanding applications that need to be aware of actual
locations to perform best.

Chorus. Chorus is a commercial object-oriented operating system based on a
micro-kernel architecture [HARx88]1[RAA%88]. The Chorus project aims at a
foundation for distributed operating systems that fulfill practical performance
needs. The micro-kemel, called Nucleus, integrates distributed processing and
communication. On top of the Nucleus subsystem servers are installed. The
subsystem Chorus/Mix implements UNIX System V, while other subsystems
such as object-oriented ones are planned.

Plan 9. Plan 9 is an operating system project at AT&T Bell Labs, Murray Hill,
New Jersey [PPT¥90]. In a sense, Plan 9 is more like UNIX than UNIX:
everything in Plan 9 is either a process or a file. The Plan 9 system itself is
rather traditional in that it is based on a closed operating system running
applications. However, the extreme overloading of the file concept leads to
surprising application interfaces. For example, the Plan 9 window system -
called Plan 814 — uses a set of files (e.g. /dev/cons, /dev/mouse, /dev/bitblt,
/dev/screen) for its interface [Pik91]. This approach causes all aspects of
distribution to be concentrated in the abstract file system, making things like
remote window servers very easy to realize. On the other hand, the concept of
well-typed, signature-oriented interfaces is given up: All requests to a service,
including all arguments and result values, are coded into byte streams. Unless
one introduces an entirely new programming language that allows definition
of stream patterns (Plan 9 uses C), there is no way to statically check
correctness of interface related operations.

29

The structure of Plan 9 and its applications may be considered
object-oriented in a basic sense: Objects are active (implemented as
processes) and communicate by means of stream coded messages
(implemented using generalized files). The abstract stream-based intetface
makes replacement of individual components (objects) easy. However, there
is no notion of type, no notion of class, and especially none of type or class
hierarchy. Also, Plan 9 objects tend to be applications, i.e. rather heavy weight,
as the stream coded communication is too expensive to support a fine
granularity on the object level. However, an interesting concept in Plan 9 are
process-local name spaces. These could be a useful approach to generalize
the Ethos configuration concept based on directory objects (2.3.3) in order to
support multiple users.

PenPoint. PenPoint is a proprietary commercial operating system [CS91]. It is
built using a rather traditional multitasking kernel. Consequentially, important
low-level concepts, like memory management, multitasking support, and
program loading are quite conventional. However, on top of these services
PenPoint is object-oriented and extensible, where a centralized Class Manager
is used to maintain a list of available classes. Classes, objects, and messages
are not supported by means of language constructs, but as a system service,
making PenPoint rather inefficient. Also, PenPoint does not include program
development support. Instead, cross development under MS/DOS is
expected.

A unique and interesting concept of PenPoint is its user interface, entitled
Notebook Metaphor. The entire system is organized into a (typically small) set
of notebooks. Each notebook contains pages, which again are used to
organize all documents. Documents are composed of hierarchically nestable
components, where each component may be controlled by a different
application. The latter is termed "recursive live embedding of applications” and
is similar to the concepts found in the Write editor [Szy92a], which is a part
of Oberon and Ethos. The notebook analogy could setve as an alternative
interface for Ethos in order to get rid of the more traditional organization
using a file directory (that is visible to the user).

Vamos/Overview. Vamos is the result of a research project at the Swiss Federal
Institute of Technology (ETH Zurich) [Pes89]. Vamos is not an object-oriented
system, but develops some strength in its extension concept by allowing new
services to be integrated dynamically. Especially the handling of orderly and of
exceptional terminations of extensions has been solved cleanly. Also, Vamos
is a multi-threaded system, providing and supporting multiple pre-emptive
threads by design. The key concept of Vamos are domains, where a domain
can be seen as an address space. A domain typically holds the combination of
a data space associated with the data manipulating code. Domains and

30

threads are completely orthogonal Domains are fully static. (The combination
of a domain and a thread forms something comparable to a UNIX process.)

The Vamos thread and domain concepts are mostly orthogonal to the
Ethos system design. Adding these concepts to a re-engineered version of
Ethos, perhaps using a micro-kernel would be interesting, as it would allow
versions of Ethos executing multiple, potentially hostile threads.

As an extension to the Vamos kernel system, the window system Overview
has been built [Wilg89]. The Ethos system already contains a standard
user-interface providing for multiple windows (viewers).

2.3 Design Principles

[t has been stressed in previous sections and is repeated here: The design of a
large system should be organized around a set of general design principles.
Otherwise it is likely that the resulting design resembles a conglomerate of
possibly inconsistent (or interferring) ad-hoc solutions. In the course of the
Ethos project (Chapter 3) it was discovered that sometimes a sufficiently
general principle may cover areas for which it originally was not intended. It is
felt that this is just due to the general nature of an abstract principle: It helps
during concept formation in a way probably leading to unifications of
seemingly disjoint aspects,

This section looks at some important principles of design usable to build
an extensible object-oriented system. The principles are general enough to
avoid a tight coupling to operating system specific topics. However, if a
principle was felt too specific for some application domain other than the
design of an extensible operating system it has been omitted from this
section.

The application of the discussed design principles will be covered in
section 2.4.

231 Before Decomposing a System

When designing a system one typically proceeds by first stating the
requirements, then listing applicable design principles, and finally applying
these principles to formulate a design. The requirements for the system at
hand, an extensible object-oriented operating system, have been stated in
previous sections and will be refined in Chapter 3 for the case study Ethos.
The set of design principles has to be examined carefully. First of all, design
principles have to be checked for applicability. This can be done by following
through several and sufficiently different examples. However, the ultimate test

31

of validity and usefulness is the application of a design principle in a larger
case study. All the principles discussed in the next sections have been applied
to the design of the Ethos system. Hence, convincing examples for the various
principles are postponed to Chapter 3.

Several known principles have been found useful and applicable (2.3.2).
However, in the course of the Ethos project it became apparent that some
new or generalized principles were also required (2.3.3).

Before considering individual design principles a common requirement can be
stated: The application of principles should lead to safe designs. The term safe
design is a little vague. In the context of an extensible operating system safety
refers to protection of certain system-wide invariants. A typical example are
storage invariants that may be subverted by malfunctioning components:
Writing to a dangling pointer causes unforeseeable side effects.

In a more general setting: A safe design should be based on the notion of
safe components. Then a new component using only a certain set of the
existing components — and relying on the correctness of these — should not
be able to break invariants established and guaranteed by the used
components. Clearly, this is a requirement extending to the used realization
tools. It definitely has effects on the set of allowable programming languages
and adds certain requirements to the hardware specifications. Requirements
imposed on the language have been dealt with in Section 1.1.4, additional
items - for hardware and language support — are on a "wish-list" and follow in
the conclusions (4.4). The technical details of safe designs based on safe
components are covered in Section 2.4.1.

23.2 Known Principles

This section concentrates on known design principles that are of major
significance for the theme of this thesis. To summarize, these are: Typing and
Type Safety, Modularization and Separation of Concerns, Hierarchical Layering
of Abstractions, and the Model/View Separation. The first three are fairly
general, while the latter refers to a rather specific yet crucial problem area.

Typing and Type Safety.

A fundamental principle is the restriction of operation applications to
arguments of proper type. For example, it should not be permissible to
multiply two characters. To achieve such a guarantee requires the introduction
of a type system, where a type basically defines a set of values, but may also
imply certain semantics by means of its name. A system is typesafe if
application of operations to illegal operands is eventually detected. in
principle, the earlier such an error is detected, the better. Therefore, languages

32

with static type checking are preferable over systems which perform such
checks at run-time. Static checking means checking by static program analysis,
typically done during program compilation. In principle, only decidable
properties (and decidable at an acceptable expense) can be checked in a
static fashion. Hence, certain properties must be checked at run-time for a
system to be typesafe. An example is the application of the division operator
to a divisor of value zero. In a general setting it is not decidable whether a
divisor in a particular program will ever have the value zero. Hence, a run-time
check for divisions by zero must be applied.

A type checker may first reconstruct type information and then check it for
consistency. This is done in many functional languages [FH88], where type
information can be left out. Recently, it has been shown that the approach is
also feasible for object-oriented languages [OPS92). This has some advantages
when defining general functions where the range and domain should not be
overly restrictive. A major disadvantage of type reconstruction is the
requirement that all source code must be available to deduce the most
general still admissible types. Another disadvantage of this approach is the
reduced readability of programs: since type names are missing, the implied
semantics of the names are not present. Also, types coveting the same value
sets, say the integers, cannot be distinguished, even if their semantics are
different and a combination using a certain operator should not be allowed.
Finally, some type reconstruction methods (called system-level type checking)
have the disadvantage that an extension can introduce type errors into
previously existing code, which is clearly unacceptable.

To maximize static checkability a programming language should have
manifest types, i.e. types that are explicitly declared. Also, all constants,
variables, and operations should be explicitly associated with some type. Then
type errors are easily detectable, the information required for type checking
can be made strictly local, and type errors cannot affect previously accepted
parts. The latter two conditions are essential prerequisites for separate
compilation (1.1.2).

Often it is useful to specify a subtype relationship, i.e. to specify that some
type denotes a subset of another one. A subtype is said to conform to its base
type, if its value set is indeed a subset of the value set of its base type, and if
the semantics implied by the subtype is a strict specialization of the semantics
implied by the base type. The former can be checked in a static manner, while
the latter would require a fully formal specification of the implied semantics,
where the specialization property would possibly be undecidable.

For the distinction between types and classes, and the related distinction
between subtyping and subclassing refer to Subsection 1.1.1. Problems with
this distinction are likely to occur if the conceptual framework is a language
that does not distinguish between type and class hierarchies, as is typically

33

done in the Simula-subtree of programming languages. In the context of
design principles one should note that subclassing is an implementation
technique, but not really a design principle, unless utmost code re-use is a
primary design goal. Also, whether the used implementation language
identifies subclassing with subtyping or not should not affect the design
principle: A design should always be type and subtyping oriented to express
proper concept relations (like is-a). Otherwise one may easily end up in insane
subtype relationships. Or, in the framework of a language without manifest
typing, say Smalltalk, one easily ends up in designs that cannot be typed in a
static manner.

Modularization and Separation of Concerns.

One of the most important design principles is the separation of concerns. This
issue has originally been discussed by Parnas [Par72], leading to the
introduction of software modules. The principle requires a system to be
structured into subsystems, each covering a separate concern. The individual
subsystems should be orthogonal in the sense that it is always clear where to
fook for some functionality. The dependencies between subsystems should be
minimal and follow some orderly policies, i.e. only inherent dependencies
should be there.

Module inter-dependencies are expressed in terms of module couplings,
which can be explicit or implicit. Explicit coupling requires a module to export
parts of it, i.e. to provide an interface, which then can be used by another
module to use the former module. Reducing the number of dependencies
between modules means making module interfaces slim and general, hiding
implementation details from module clients. Implicit coupling refers to
common assumptions made in more than one module that are not manifest
in an interfface used by these modules. An example might be the shared
assumption of the value of some constant. Implicit couplings should be
avoided as they significantly hinder maintenance and updating. In the
example, if the value of the "constant’ is to be changed during a system
modification, all occurrences of the implicitly assumed value have to be
tracked down and changed, risking an inconsistent update.

If the functionality of a module is accessed only by means of its interface,
and if the module's interface is general enough to hide most or all of the
implementation details, then the module follows the refined modularization
principle called information hiding. Hiding information to an extreme leads to
a system of (almost) disjoint modules that can be changed and replaced
individually without taking too much care of other modules in the same
system. Furthermore, and perhaps even more important, if most details of a
certain module are hidden, the module can establish and guarantee invariants
for its intemal functions and state. Since all modifications to the module's
internal state can be guarded by means of access functions in the module

34

 ‘ intetface, client modules cannot invalidate such invariants, despite potential

programming errors in such clients. This special aspect of information hiding
is usually captured by the terms encapsulation or, more specific, abstract data
type. These are useful goals to strive for. However, in the context of extensible
systems the issues of information hiding and constructing abstract data types
become far more complex, as the goals of hiding and making extensible tend
to conflict with each other.

If a system is planned to be extended later, extensions should add new
modules instead of modifying existing ones. This is a stability policy, as it
reduces the risk of uncontrolled effects caused by an extension. Therefore,
modules must be designed in a way that their interfaces are complete, i.e. that
it is unlikely that the module contains unexported parts that actually need be
imported by an upcoming extension. This makes the design of effective
module interfaces a difficult engineering problem. One way to ease this
problem is to look for slim sets of orthogonal functions to be provided by a
module. If the module encapsulates a clearly specified service, this might be
easy. It is far more difficult, if the set of functions intentionally is a selection
out of a too large "complete” set. One way to attack this situation is to give up
information hiding: If a module exports all its essential parts, regardless of
implementation details and safety breaches, then it is simply not possible that
an upcoming extension misses something in the module’s interface.

Another possibility, perhaps the preferable one, is to design a module to
export extensible abstractions. Instead of relying on the completeness of an
abstraction provided by a module, a module provides some basic abstraction
that can be extended by upcoming modules. When adding a new module, it
is important to distinguish between introducing a new abstraction and
deriving an extended abstraction based on an existing one in an existing
module. As long as clients of the existing module should stay with the
functionality provided by the existing module and only new clients (of the
new module) can profit from the new module, there is no difference.
However, if existing clients, necessarily unaware of the new module, should
profit from the functionality of the new module, things become more
complex and the difference shows.

For example, a module Files may provide a standard interface to files, say
Create, Lookup, Read, Write, and Close. The provided abstraction File may
well be organized as an abstract data type, and the module Files may contain
an implementation of this abstraction based on a disk device. Then a later
extension adds a new kind of file, say files based on a new kind of device, or '
files with an enhanced semantics, e.g. new operations for positioning in the
file. Assume that the new files are based on the implementation of the old
files, e.g. by adding a buffer mechanism to support positioning. Nevertheless,
clients of the old Files module cannot use files created using the new module,

35

as they statically refer to operations defined in module Files.

Extensible abstractions are based on the notion of binding operations to
abstract entities instead of binding operations to modules. The most primitive
form of binding an operation to an entity is by means of procedure variables. In
the example of Files above, if Create or Lookup bind appropriate procedures
to variables read, write, and close of a file, then clients of the old Files module
could properly deal with a file provided by the new module. Of course, an old
client will not be able to use functionality that was not at all anticipated by
the original interface: It will operate on the conceptual projection of the
extended to the original abstraction.

Typically, an abstraction will be represented by an object of a certain type.
For extensions to be possible, new information should be bindable to an
existing type (not to objects of an existing type!). The appropriate concept is
called type extension [Wir88a] and allows a new type to be based on an
existing type. Then, reference variables of a base type may actually refer to
objects of a derived type. In the Files example, this allows a new file to
contain buffer information, although being used and passed around by clients
of the original Files module.

The use of procedure variables to attach semantics to types is in a certain
sense unsafe, at least as long as there are no means to export "read-only’
variables. The unsafety comes from the fact that the procedure variables can
be modified in any client module, possibly installing procedures inconsistent
with the actual type, or inconsistent among each other. Accepting the
usefulness of binding procedures to modules in the case of plain abstract data
types, one might proceed and bind procedures to types (or classes) in the
case of extensible abstractions. As a result the combination of an object's type
and its semantics defined by the set of bound procedures is fixed. Such
bound procedures are called methods. The implementation of a type together
with its methods is called a cfass.

Hierarchical Layering of Abstractions.

Often a system design can be cleaned up by imposing a partial ordering on
the provided abstractions. Then the abstractions can be grouped into layers
such that no abstraction of a lower layer depends on abstractions of a higher
layer. One of the first systems built using a layered structure was THE [Dij68).
It is useful to associate types with abstractions. Then a set of modules -
containing type definitions and class implementations — forms a layer. The
import relation among modules reflects the layering and a proper layering
therefore implies an acyclic import graph.

If a set of modules resides in the same layer, cyclic import among these modules could
be allowed. On the other hand all the modules in a cycle function only if synchronously
available. Hence, one might argue that modules contained in an import cycle should
better be merged into a single module to make the tight coupling explicit. However,

etimes the sheer size of madules created this way may be a practical argument to
ave multiple modules and thereby cyclic imports anyway.

conjunction with layering of abstractions a waming may be in order. Often
it is useful to introduce a relatively fine-grained layering when studying a
_ concept space. The 1SO OSI (International Standards Organization / Open
Systems Interconnect) reference model is a typical example for such a
referential framework. When turning such a conceptual framework into the
design for an implementation great care must be taken not to map every
conceptual layer straight into a design layer. The resulting design is in danger
of having far too many levels of implementations separated by interfaces that
are likely to be overly general and costly. Again, the typical implementation of
protocol stacks following the 1ISO OSI model is a good example for how not
to do it. Instead, one should analyze the true needs for layering, i.e. by
analyzing where extensions are likely to go in. Only these layers should be
found in the resulting design, where each of these layers will typically cover
several of the original concept layers.

However, another waming of the opposite kind is perhaps also in order.
Enclosing too many conceptual layers into a single design layer may make
extensions hard or impossible, often requiring large parts of the system to be
redesigned when the need for an extension emerges.

The two opposite warnings stated for hierarchical layering indicate that a
proper layering of a system design is, just as the definition of proper module
interfaces, one of the hard engineering prablems.

Separating Models and Views.
One of the major ideas behind the original Smalitalk class library is the
Model-View-Controller (MVC) [KP88] design principle (often called MVC
"paradigm”). MVC can be seen as a design principle, but is significantly more
specialized in its application range than the before mentioned principles of
typing and modularization.

The MVC design principle is based on a simple observation. In an
interactive computing environment there are three fundamentally different
components. Firstly, some components implement computational models.
Examples are numerical objects, like vectors or matrices, symbolic objects, like
formulas, graphics, or texts. Secondly, rather different components are used to
visualize objects of the first kind, i.e. to display or print aspects of models.
These are called views, and examples are visible representations of the
examples given above. Thirdly, controller components handle user interaction -
by interpreting user commands. Controllers cause modifications of models or
view-specific settings (e.g. the view point or a zoom factor). Modified models
notify their controllers and views after changes took place such that
controllers and views can stay up-to-date. Figure 2.1 illustrates the MVC
components, where multiple controller / view pairs represent the same

37

model. Also, an external component (“other component’) is shown that
modifies the model without knowing anything about views.

I
— | Controller, Controller1 Controllern_1 | corcr)ll[:j:)er:ent
| T — | '
y controls ; 4 :
—> | View, View e Viewp_q :
T T 1 |
!
reacls reads & modifies I
y y [
notifies '
s Model |
(dependency list
or broadcast)

Figure 2.1 — The Model View/Controller Separation.

Separating models and views decouples two rather different concerns, hamely
management and visualization of models. The result is a layering where views
know about their concrete models, while models at most know that some
abstract views may exist that visualize them. Hence, concrete views may be
placed in layers above the corresponding model layers, The decoupling makes
it easy to maintain multiple and even different views onto the same model.

A model needs to know little about existing views, but it needs to notify
views if changes occured. There are two ways to achieve this coupling of
models to views: Using broadcasts or using direct notification. In the former
case the model merely needs to broadcast a message to all views that
currently exist in the system. Hence, all that models need to know about is a
single notification broadcast mechanism. In the case of direct notification a
model maintains a list of (abstract) views that are supposed to visualize the
madel. This has performance advantages as only relevant views are notified.
However, maintaining dependency lists introduces certain complexity to a
system design. (in Ethos a single centralized broadcasting service exists.)

Separating controllers from views is in a sense more difficult, as controllers
(input) are tightly coupled to their views (output): The view is affected by
controller activities, but the controller gets control by activation of certain view
features. For example, a controller may be used to scroll a view: The direct
manipulation is provided by the controller, but the feedback is provided by
the view. Often, it is a good choice to merge view and controller. In other
cases a view may allow for installation of a controller component. (Examples
for both possibilities are present in Ethos.)

e

. 38

23.3 New Principles / Generalizations of Known Principles

in the course of the Ethos project some new design principles emerged that
are considered important results of the overall project.

2.3.3.1 Separating Carriers and Riders

For sufficiently complex data structures the separation of data access from
data management is of interest. This is especially the case if auxiliary state is
required to support the access mechanism. For example, a file system may
provide multiple access paths to the same file. Then, the current position in
the file — perhaps split into a sector number and a sector offset — is associated
with each of the access paths. Another example is a complicated data
structure, say a B-Tree, where iteration over the entries requires maintenance
of a recursion state. This can be done by means of a recursive function
performing up-calis for each element found. However, this kind of structure
enumeration makes the combined traversal of multiple structures impractical,
For example, traversing two B-Trees simultaneously to find all entries that
share certain criterla becomes difficult. As for file access paths, special access
objects, often called cursors, can be used to access and traverse the B-Tree. Of
course, multiple cursors can be set onto the same B-Tree. A cursor can be
used to read the current, next, or previous entry from a B-Tree based on a
current position. To do so the cursor maintains the recursion state of the
B-Tree traversal. As for files special care must be taken to specify the
consistency semantics in the case of reader/writer and writer/writer conflicts.
A possibility is the use of timestamps to detect updates of the structure. A
cursor with an outdated timestamp may then be resynchronized upon its next
use. This avoids maintaining a list of all cursors active on a certain structure.

The concepts of file access paths and cursors on data structures can be
unified and generalized into the principle of Carrier/Rider Separation [Szy90b].
Carriers are the structures holding data, while riders are the structures used to
provide (formatted) access. The crucial requirement is that carriers and riders
are independently extensible and that multiple riders may simultaneously be
connected to the same carrier. For example, a rider defined to access an
abstract stream of bytes should be usable with every cancrete stream of bytes,
whether the stream is implemented as a file, a network connection, or a
memory-based data structure. Likewise, an abstract stream rider may be
specialized into various riders performing different transformations on the
accessed data. Finally, operations exist that take an abstract rider parameter
set to a corresponding carier. (For an example, cf. 34.5.2) Therefore, a
Cartesian product of carrier and rider variants has to be supported, where the

39

lists of possible carriers and riders are both open to extensions.

The key idea is to define a bottleneck interface to interconnect carriers and
riders. The bottleneck is particulatly hard to design: As it is shared by two
separate extension hierarchies it is not extensible. It is helpful to consider the
stream example given above. Adding a new operation to the bottleneck
interface, say InvertByte to invert every bit of a byte in-place (something
strange enough that it is likely not present in the original bottleneck interface),
would require a new carrier and a new rider base class. Hence, the new
functionality could neither be used by existing stream carriers nor by existing
stream riders. In other words, modifying the bottleneck interface always
affects carrier and rider extension hierarchies.

Rider
Extensfons

Carrier
Extensions

Bottleneck

Carrier Rider

Figure 2.2 - The Carrier/Rider Bottleneck Interface.

The concrete selection of operations for a bottleneck interface depends
significantly on the supported carriers and riders. For the example of byte
streams it consists of two primitive operations for reading and writing bytes,
respectively. (For optimization purposes, it may be enriched by adding two
operations that read or write entire blocks of bytes.)

Additionally, an operation is needed that connects a rider to a carrier. The
interface of the rider typically adds further operations to support reading and
writing other data types. Different rider implementations may then apply
different mappings of the rider supported types to and from byte streams
supported by the bottleneck intetface. Also, a rider may contain auxiliary fields
that are used by the carrier to reflect the status of the most recent operation.

Below, the simplified interface of a stream/stream rider pair is given. (The
distinction of records and pointers is not important at this point. However, it
needs to be considered carefully when designing a concrete system.)

TYPE
Stream = POINTER TO RECORD
PROCEDURE (S; Stream) Set (R: StreamRider; pos: INTEGER);
(xthe bottleneck interfacex)
PROCEDURE (S: Stream) Read (R: StreamRider; VAR x: BYTE);
PROCEDURE (S: Stream) Write (R: StreamRider; x: BYTE);
END;

40

StreamRider = RECORD
eos: BOOLEAN; (xend of stream reached)
res: INTEGER; (%res # O = unsuccessful completion of most recent operations)
PROCEDURE (VAR R: StreamRider) Read (VAR ch: CHAR);
PROCEDURE (VAR R: StreamRider) Readlnt (VAR n: INTEGER);
PROCEDURE (VAR R: StreamRider) Write (ch: CHAR);
PROCEDURE (VAR R: StreamRider) Writelnt (n: INTEGER);
END;

The next aspect to consider is the state space of a rider. It can be split into the
product of two separate state spaces, one defined by the cartier and one by
the rider itself. For example, a stream formatting rider may maintain some
statistics on the data processed so far. These statistical data belong to the
rider defined state space. On the other hand, the stream may associate some
positional hint information with the rider, which then is part of the carrier
defined state space. Obviously, the rider cannot take care of the carrier
defined, but rider associated state, as this would significantly hinder extension
of carriers. On the other hand, the carrier should not directly maintain such
per-rider information, as it would require the carrier to maintain a list of
attached riders, This is undesirable for three reasons. Firstly, it reduces the
efficiency of the carrier implementation, as the rider-specific information has
to be retrieved from the list indexed by the rider pointer, instead of directly
from the rider. Secondly, the rider can no longer be allocated statically, as it
must be linkable into carrier lists. Thirdly, the rider can no longer be collected
by the garbage collector, without requiring clients to explicitly inform carriers
to close a rider, i.e. to remove it from their lists.

This dilemma can be solved by introducing a moderating object, called /ink,
implementing part of the bottleneck interface. To do so the bottleneck
interface is split into operations that depend on carrier defined rider state, and
others that do not, Usually, almost all bottleneck operations belong to the first
category. (An important and necessary exception are operations to attach new
tiders to a carrier.) Then all rider state dependent operations are implemented
by a link, while the remaining operations are implemented by the carrier itself.
When attaching a rider to a carrier, the carrier creates a suitable link object.
The carrier connects the link object to the rider which then may start to
invoke bottleneck operations implemented by the link. Since the link
implementation is fully under control of the used carrier, it does not hinder
cafrier extensions.

41

l Bottleneck ‘

Carrier

| Interface]
Figure 2.3 - Refined Bottleneck Interface using Link Objects.

The effect of the introduction of links may be seen when re-considering the
simple stream example.

TYPE
Stream = POINTER TO RECORD
PROCEDURE (S: Stream) Set (R: Rider; pos: INTEGER);
END;

StreamlLink = POINTER TO RECORD (xthe bottleneck interfacex)
PROCEDURE (L: StreamLink) Read (R: Rider; VAR x: BYTE);
PROCEDURE (L: StreamLink) Write (R: Rider; x: BYTE);

END;

StreamRider = RECORD
base—: Stream;
link—: StreamLink;
eos: BOOLEAN;
res: INTEGER;
PROCEDURE (VAR R: StreamRider) Connect (base: Stream:; link: StreamLink);
PROCEDURE (VAR R: StreamRider) Read (VAR ch: CHAR);
PROCEDURE (VAR R: StreamRider) Readint (VAR n: INTEGER);
PROCEDURE (VAR R: StreamRider) Write (ch: CHAR);
PROCEDURE (VAR R: StreamRider) Writeint (n: INTEGER);
END;

The pointer connecting the rider to its link is part of the rider interface. This is
important since rider extensions need to call the bottleneck operations implemented by
the link. The pointer connecting the link to its carrier is kept private, though. To do so is
possible since the link is created by the carrier and therefore the link and carrier
implementations can be coupled tightly. A private carrler/link connection increases
safety, as it is not possible to connect a link to a mismatching carrier. Otherwise an
inconsistent bottleneck interface — composed of a mismatched carrier/link pair — could
result. Since the rider cannot contain carrier (or link) specific state — except for the
feedback information stored in some of its public fields —, there is no such safety
problem for the rider/link connection.

42

The steps happening when setting a stream rider to a stream are:

VAR r: MyStreamRider; s: MyStream; x: INTEGER;
s.Set(r, 42);
VAR u: MyStreamLink;
create link object u, or re-use r.link if (r.link # NIL) A (rJink IS MyStreamLink);
r.Connect(s, u)
if necessary, adapt to change of stream;
call methad in super class
r.base = 5; rlink = u
r.ReadInt(x);
VAR o, hi: CHAR;
rlink.Read(lo); r.link.Read(hi); (%may set r.eos%)
x = INT(hi)*x256 + ORD(lo) (xassumes signed conversion INT: CHAR - SHORTINTx)

IF ~re0s THEN ... x ... END

Figure 2.4 shows the minimal pointer relations, and Figure 2.5 the duties of
carriers, links, and riders. To make things more clear the situation is shown for
two potentially different riders attached to the same carrier. The grey areas in
Figure 2.5 correspond to possibly distinct modules implementing the
components within each area, i.e. carriers and links are always implemented
together.

Rider A

Rider 8

Figure 2.4 ~ Referential Relations of Carriers, Links, and Riders.

'

Carrier

Carrier

Figure 2.5 - Functional Relations of Carriers, Links, and Riders.

43

The design of Ethos contains many applications of the Carrier/Rider
Separation, as will be discussed in Chapter 3. For the time being it should
suffice to note that the range of applications is surprisingly large. The
examples cover model spaces with a single dimension (stream devices, files:
3.4.5, texts: 3.4.6), spaces with two dimensions (raster devices, pixelmaps:
34.7.1), and abstract spaces (task spaces: 3.4.4). Further examples covering
higher dimensions (e.g. voxelmaps to handle volume-pixel models), or other
abstract spaces (data structures) are easily derivable.

The Carrier/Rider Separation may be compared to the Model/View Separation. Both
separations handle 1-to-N relations, and both support independent extensibility of the
separated components. However, Model/View does not expect a view to carry
madeldefined state information, In fact, it is even assumed that models are (almost)
unaware of the existence of views. Thus, the Carrier/Rider principle may be considered
a generalization of the Model/View principle. The generalization is mainly expressed by

the support of carrier specific rider-state, which motivates the introduction of link
objects.

2.3.3.2 Directory Objects.

The discussion of separation principles like Model/View or Carrier/Rider leads
to a more fundamental issue: That of object creation. Separation principles are
mainly motivated by the wish to support independently extensible but
combinable type hierarchies. However, a hierarchy of types produces a
number of choices among which one has to select when an object of a
certain type is needed: In principle, an instance of any subtype of the required
type will do. Obviously, there must be some place in the system where for
every such situation the choice is made what type to use.

The most basic approach is service-level object creation. Here, a sewice
directly creates and initializes the objects it provides services for. For example,
a file system may offer a function New that returns new file objects. The major
disadvantage of this approach is its complete lack of extensibility. Since the
concrete type used to instantiate objects is burned into the service, there is no
way to have it work on objects that are instances of a subtype of the original
type.

The situation may be improved using client-level object creation. Instead of
calling a service-provided New function, a client creates an object of the
required subtype itself. The service provides proper initialization operations
such that the newly created object can be supported.

For some programming languages, such initialization operations are automatically
executed upon object creation. Using an object-oriented approach, the initialization
operations are methods of the created object, perhaps to be called explicitly after object
creation. This allows redefinition of initialization code in subclasses and avoids the
problem of erroneously initializing an object of a subclass using an initialization

44

operation defined for a base class,

When using clientlevel object creation, the types/classes used to instantiate
objects are burned into client instead of service code. This makes it easy to
add new clients that are based on extended services. However, it still blocks
the extension of existing clients, A third approach called prototype cloning can
be used to add another degree of freedom: Client code uses a generic object
cloning facility to get a copy of some object of the wished type. The source
object is called a prototype, in the sense that it shows prototypical behavior: It
is of some exchangable subtype/subclass and pre-initialized to accommodate
exchangeable requirements.

The use of prototype cloning leads to significant flexibility but still exposes
a major problem: The client code needs to know which prototype object to
use for cloning. Typically, this choice depends on certain parameters, and the
mapping of parameter values to prototype objects should not be burned into
client code. For example, a file system that implements files as objects would
have to provide a prototype object for files. A client wishing to open a file
then needs to clone the prototype and perform an open operation on the
newly created file object. If there are several file systems implementing
different file objects, the choice which prototype to use may depend on the
file's path name. However, the mapping of file name parts to file prototypes
should not be redone in every client, as it makes it impossible to add a new
file system, or a new naming convention.

All the object creation problems considered so far are caused by too early
bindings of creation information to creation locus. All these problems can be
avoided by following a new design principle: The use of Directory Objects. A
directory object provides operations to create objects of a certain type. These
operations often take parameters that further specify the kind of object
required. For example, a directory object of a file system creates file objects
based on a file path name. Application code only knows about a variable
which holds a directory object creating objects of the wished type.

Even while the system is executing, a new directory object may be installed.
All forthcoming requests directed to the variable where the directory object
got installed will then be serviced by the new directory object. As a result,
existing code will be able to utilize newly installed extensions immediately
without any needs for recompilation. A directory object corresponding to the
file system example is illustrated below. (Note that an abstract file is just a
positionable stream.)

45

TYPE
FileDirectory = POINTER TO FileDirectoryDesc;
FileDirectoryDesc = RECORD
PROCEDURE (F: FileDirectory) Old (name: ARRAY OF CHAR): Stream;
PROCEDURE (F: FileDirectory) New (name: ARRAY OF CHAR): Stream;
END;

VAR
fileDir: FileDirectory;

Each service category provided in a system has a corresponding directory
object. Extensions that refine an existing service implement a directory object
that makes the extensions accessible. A system configuration then consists of
the current assignment of directory objects to directory variables. Often, an
extended directory object does not fully replace a previously existing one, but
handles only certain requests while forwarding others to a default directory
object. Then, the system configuration also contains the default relatiors, i.e.
the assignment of some directory objects as defaults for others. (It is
important that new directory objects for a certain abstraction — perhaps as
part of other directory objects — can be introduced freely: The global directory
object is merely an anchor for configuration purposes, while different
applications may indeed use different directory objects for the same
abstraction.)

The Trestle Window System makes use of so-called oracles to adapt high-level
abstractions to screen-dependent resources [MN91]. In a sense, oracles are special
directory objects.

Consequences for the Extension Model. The use of directory objects has radical
consequences for the extension model of the system. If it is assumed that a
concrete class is implemented as a subclass of another concrete class, then
the natural extension model is based on inheriting methods from the base
class, and selectively overriding some of these methods in the subclass. Then,
the overriding methods can refer to the implementation of the base class by
calling overridden methods.

In this case it is statically determined from which class a subclass is derived.
Sometimes, it is preferable that an instance of a subclass forwards unresolved
requests more dynamically. In a general setting, requests should be directed to
another object that is an instance of (another subclass of) the base class.
Usually, the object to forward to is created by means of a request to a
directory object associated with the base class. Thereby the system
configuration can dynamically affect to which class unresolved operations are
forwarded. In other words, the subclass hierarchy, other than the subtype
hierarchy, is not static but subject to run-time configuration.

46

While it seems a bit complicated, strictly following this rule leads to a |
uniform and powerful extension model. Its applicability will be demonstrated
in Chapter 3. In more detail, the extension model is explained in the next
section. Also in 2.4.3, a natural and clean way to structure a system using this
design principle and extension model is introduced.

47

2.4 System Structuring

241 Primary System Structure Given by a Module Hierarchy

Subsection 2.3.2 motivated the importance of modularizing a system and
summarized the most important aspects of modularization. This section picks
three essential criteria — module coupling, safety of modules and interfaces,
and modularization criteria — and adds more technical details relevant to the
discussion of Ethos in Chapter 3.

Module Coupling,

The notion of module coupling and the distinction between implicit and
explicit coupling have been introduced above (2.3.2). Module coupling may
be understood as the sharing of assumptions and conventions across module
boundaries. If coupling is implicit, shared assumptions and conventions are
not expressed in the module interfaces.

A general design rule is to reduce module coupling to a minimum while at
the same time making it as explicit as possible. The former maximizes the
independence of the modules, improving the comprehensibility of the
modules as well as of the system composed thereof. The latter aims at
capturing all interdependencies of a set of modules in a static fashion: If this
is done successfully, a module modification affecting another module is
statically detectable, e.g. by a compiler. Both design rules interact with the task
of decomposing a system into modules. A good decomposition following
both design rules is difficult to achieve, especially if the system is to be
extensible,

The used programming language should contain a module concept that
allows to define export relations, i.e. to distinguish among exported and
private parts of a module. Further, a language may allow to classify exports,
e.g. to mark an exported variable to be read-only outside of the module, or to
mark an exported type or class to be non-extensible outside of the module.
Modules with defined export relations may be imported by other modules,
e.g. by listing imported modules in an importing module.

Module coupling is fully explicit if all assumptions about an imported
module M are manifest in the export relation of M. For example, if the
module exports a variable of a certain type, then it should be valid to set the
variable to any value allowed by the type, and likewise one must expect to
find any such value in the variable. If the value needs to be constrained, i.e. a
system invariant should be maintained, the variable should be exported at
most in a read-only fashion, while: modlflcatlons should be controlled by an
exported procedure.

48

Often, implicit coupling is implemented by means of unsafe features of the
used programming language. For example, it may be possible to modify
variables that are not exported by directly accessing memory locations. This
may extend to the parallel definition of entire data structures within separate
modules. In general, such techniques should be avoided. By introducing a
new module implicit couplings can always be removed. By declaring the new
module to be restricted, i.e. by not providing its interface for general use, the
safety of the original modules is not affected.

A implicit B A
coupling) 3

w

explicit coupling via

AB
auxiliary module AB

Figure 2.6 — Using an Auxiliary Module to Remove Implicit Couplings.

it should be noted that the introduction of an auxifiary module may not only make a
coupling explicit but may also make it less efficient. While this may be considered a
deficiency of the used language, it holds for most languages currently available and is
especially true if modules are used as units of separate compilation without supporting
inter-module optimizations. Hence, at limited but critical places in a concrete system,
the controlled use of implicit couplings may be acceptable. (For example, certain
assumptions about the storage layout may be shared implicity among the
implementations of the garbage collector and the module loader.) In any case, implicit
couplings require great care and sufficient documentation, especially as they are outside
of the "self documenting” part of the used programming language.

Safe Modules vs. Safe Module Interfaces

A quality measure for the modular decomposition of a system is the safety of
the involved module interfaces. The idea of having safe module interfaces
relates to Cardelli's definition of safe modules [Car89].

In the following, only problems of safe modules and safe module interfaces
expressed in the language Oberon (or Oberon-2) are considered. Before
analyzing the concept of safe module interfaces it is important to understand
that Oberon can be split into a safe and an unsafe sub-language. By design of
the language, all unsafe features have been moved to a pseudo-module
SYSTEM that is known to the compiler. Therefore, a module using one of the
unsafe features needs to import SYSTEM. A module using the unsafe part of
the language is considered unsafe. A module using unsafe parts of the
language in its interface also has an unsafe interface. A module importing a
module with an unsafe interface is itself unsafe.

The designer of a madule may also declare a module interface to be unsafe.
The latter form is a convention that is not part of the language Oberon-2. For

49

example, a module may be declared to be a private part of a subsystem that
ought not be used outside, e.g. a disk driver module that allows to initialize a
system's disk. Although the interface of this module is safe in a formal sense,
it is not so within the context of the system. (The file system implemented on
top of the disk driver module does not expect the disk to be initialized while
being used as a file store.)

On the other hand, an unsafe module may well have a safe interface. This is
the typical case when a module maps a low-level device to a standard
abstraction, say a network link to an abstract stream of bytes. The idea behind
safe interfaces is that when the corresponding implementation is correct, no
safe client module can possibly invalidate system invariants. (Of course, a
module with a safe interface but an unsafe implementation may still be
incorrect; then no guarantees can be made.)

To understand the implications of interface safety, the Oberon file system may
serve as an example. There, module Files exports a block read operation called
Files ReadBytes:

Files.ReadBytes (VAR 1: Files.Rider; VAR x: ARRAY OF SYSTEM.BYTE; n: LONGINT);

The language allows the actual parameter substituted for a formal reference
parameter of type ARRAY OF SYSTEM.BYTE to be of any type. An early
language revision of Oberon moved type BYTE to module SYSTEM. This forces
the interface of module Files to import SYSTEM, but the clients of Files need
not import SYSTEM in order to use ReadBytes! However, passing a pointer to
ReadBytes allows any maodule to violate an important system invariant, i.e. that
pointers always point to a valid object in the heap or be NIL. For example, the
code fragment

VAR p: POINTER TO Something;
Files.ReadBytes(r, p, 4)

over-writes the pointer variable p with an arbitrary value. The consequences
are disastrous if p in turn does not point to a valid object in the heap and the
garbage collector is run. Thus, the interface of Files, a first class module of the
Oberon system, must be considered unsafe, making all implementations of
clients of Files unsafe, too!

It is crucial to distinguish between an unsafe module which could be
harmful, and a incorrect module which indeed is harmful if it is also unsafe.
The point is that a wrong but safe module cannot be harmful to other
modules. Hence, trying to have almost no unsafe modules in a system is a
significant contribution to a systems overall robustness.

50

There are two possible solutions to the problem of Files.ReadBytes. On the one hand,
one might change the language to remove the special compatibility clause for reference
parameters of type ARRAY OF SYSTEM.BYTE. On the other hand, one might strictly
tefrain from using such a parameter declaration in the interface of modules that are
supposed to have safe interfaces.

The former approach is cleaner, but leads to a language revision. The latter has been
taken in Ethos. For example, block access procedures in Ethos have reference
parameters of type ARRAY OF CHAR. This is less intuitive, as it forces every byte to be
interpreted as a character, but is safe. (For a client to perform an unsafe mapping of
some data structure to an array of characters, the client has to import SYSTEM and use
SYSTEMVAL to explicitly cause the unsafe type cast. This makes the unsafe
implementation of the cfient explicit.)

As a late addition, the standard Oberon compiler has been changed to emit a
warning if a module makes use of the unsafe compatibility clause for reference
parameters.

What belongs into a single module?

Generally, definitions that together form an abstraction belong into a single
module. In particular, definitions standing in a cyclic relation should be kept
within a single module. Otherwise, cyclic module imports result, making the
set of modules that contains the cycle practically unseparable.

On the other hand, it is important to achieve a certain balance: The size
and complexity of the involved modules should be of similar magnitude.
Both, having many almost empty modules and having seriously over-stuffed
modules invalidates much of the structuring power of modules. However,
achieving a proper balance is a subtle design issue. Often, it is a good test to
check if the main meaning of a module can be explained in a single or at
most a few sentences. This test may equally well be applied to other levels of
structuring, e.g. to constants, types, variables, and procedures. However, the
larger the structural unit — modules being the largest —, the more complicated
is the successful passing of this simple test.

An interesting question is whether a module can ensure invariants spanning instances
of multiple exported types. Even more, the question is if this can be done in the
presence of extensions of these types. A thorough investigation of this problem may be
found in [Szy92b]. The key point is the read-onfy access restriction a module may
impose on exported types in Oberon-2. As explained in [Szy92b], this allows to
hardwire certain interrelations into the defining module. For example, a module M
exports two types List and ListMember whete instances of ListMember are supposed to
invariantly belong to at most one instance of type List. To increase readability and
efficiency of client code, it is assumed that a pointer field rext of ListMember is
exported by M. Even when extending List or ListMember, this invariant can be
maintained by M if the pointer field is exported in a read—only fashion. A safe client
module of M has to use the (normal or type—bound) procedures provided by M in
order to manipulate these pointers. Hence, there is no way for a safe module to break
the invariant guaranteed by M for lists and list members.

51

242 The Type Hierarchy: A Secondary System Structure

In Section 232 the importance of modularization and typing has been
stressed. It is interesting to consider the dual role on system structure that
these two principles have. The module hierarchy forms the outermost
structure of the system, but the actual decomposition of a system into
modules is often driven by the type hierarchy which essentially constitutes the
hierarchy of abstractions. A useful modularization scheme requires every type
to be defined in exactly one module. Also a module that defines a subtype
needs to define the corresponding base type, or import the module that
contains this definition. Hence, the design of the type hierarchy directly affects
the module hierarchy, and vice versa. A module is a subsystem potentially
containing multiple interrelated types and classes.

o 5 | [

C 3 Type
3 Module

T — S Sissubtypeof T
A —» B BimportsA

Figure 2.7 — Primaty and Secondary Structuring using Modules and Types.

The structural similarity or type and module graphs led to many
misconceptions in earlier language designs. For example, the role of modules
was loaded onto the type scheme, or modules were treated as instances of
special module types. In Modula-2 [Wir82] and even more in Modula-90
[Ode89), modules were identified with abstract data types. In Simula
[DMN68], Eiffel [Mey92] and Sather [Omo91] classes are also used for
modularization. All these misconceptions led to complications of the type or
class constructs and to less clean language designs. (For a clear distinction of
modules and types/classes cf. [Szy92b]).

Sometimes the type graph cannot be strictly hierarchical, ie. cyclic
dependencies cannot always be avoided. If this is the case, the types
belonging to such a cycle are strongly interrelated and therefore should
belong to the same module. In general, it is considered good engineering

52

practice to avoid cycles on the module level. [ndeed, the language Oberon
forbids cyclic import.

Based on the type hierarchy a module hierarchy may be derived by
clustering all essentials belonging to an important type into a single module.
A type is considered important if it is useful in its own right; if it can be used
only in conjunction with some other type, the two types should be packaged
into the same module.

2.4.3 The Canonical Module Structure

Often a module, say M, defines a single new abstraction by introducing a new
type T. Further, T may be a subtype of another type, say 70. Finally, various
implementations of T may exist or will exist in the course of system extension.
To capture this relation between abstractions and implementations it is
worthwhile to distinguish subtyping and subclassing (cf. 1.1.1). Figure 2.8
illustrates a possible constellation of types and classes. (In the figure,
subclassing follows the direction of subtyping. In principle however,
subclassing may also go in the opposite direction of subtyping.)

—> subtype-of
— subclass-of
— implements

Figure 2.8 — Types and Classes in Separate Hierarchies.

In a language identifying subtyping with subclassing (e.g. Oberon-2), the
separation of classes from types can be approximated quite intuitively by
requiring classes to be leaf-nodes of the type hierarchy. In other words, all
inner nodes of the type hierarchy are (semi-)abstract classes, cf. Figure 2.9.
Then, abstract classes are extended to concrete classes, providing altemative
implementations. A formal type system based on this use of abstract classes is
given in [Dod92]. An abstract class may be made semi-abstract by providing
some of the method implementations. The important point is that
(semi-)abstract classes must not be instantiated, but merely serve to express
subtype and subclass relationships. This should be supported by the
language: It should be possible to express that a certain class is meant to be
abstract, i.e. that creation of direct instances of that class is a programming
error. ‘

53

Figure 2.9 ~ Types and Classes in a Single Hierarchy.

Following this strategy reduces the potential for code re-use by means of code
inheritance, which is often cited as one of the most important benefits of
object-oriented programming. By its very nature, the code inherited from an
abstract class tends to be almost empty. It may serve to establish certain
abstraction-related defaults, but it usually does not contain significant
contributions to the implementation of a subclass. However, a subclass
hierarchy supporting code inheritance is less important than one might think
at the first glance, The following simple calculation illustrates this point.

Let |d indicate the code size of a class ¢, including inherited code. Let two
classes C and C’ be of a form that allows C' to be expressed as a subclass of €
in a way that the coding effort of (' gets almost negligible. Then the code
reused when introducing C' is in the order of |(]. Let C and C’ implement a
type T. Next, let T have k clients, i.e. k different components that make use of
the interface provided by T. Each of these components has code size |xl. If C'
is introduced then all clients of T can potentially make use of C". If the clients
of T are coded in a way that they can be configured to use any
implementation of T without being modified, then the effective code re-use is
in the order of k |xl.

Clearly, for extensions introduced as quick fixes subclassing is useful: It
re-uses the code of the base class, and the number of clients using the fix is
expected to be small (as it is a fix, not a firstclass extension). However, if the
number of clients is significant and perhaps uncontrollable, which is normally
the case for an inherently extensible system, the re-used client code easily
outweighs the re-used base class code. For a language that does not support
separate type and class constructs, it may well be preferable to emphasize the
type hierarchy (as outlined above, cf. Figure 2.9), instead of risking a hardly
documentable mix of type and class hierarchies (by emulating Figure 2.8).

54

To make clients largely independent of the class used to implement a certain
type, clients should not directly create objects, e.g. should not call NEW.
Instead, each major type should have a directory object (cf. 2.3.3) associated
with it. By exchanging directory objects associated with certain types, existing
client code can be re-configured to use different implementations (classes) of
these types.

An important objection might be that it is sometimes not possible (or at
least not feasible) to re-implement a class in order to change some details.
This is the case if the base class contains proprietary and intricate code.
However, in such a case it is usually possible to use forwarding: If an object of
the new class cannot handle a certain request it forwards the request to an
object it contains. The helping object is typically an instance of the class to be
extended. This way there is no need to have direct access to the class requests
are forwarded to. An important benefit is the gained flexibility: The new class
can base its behavior on any object conforming to the required type. Hence, it
is possible to compose various extensions on an object by object basis. (In
the case of code inheritance this would require dynamic binding of
superclasses.)

The ideas developed above lead to a. uniform module structure, where a
typical module

» exports a new abstraction of type T that is perhaps a subtype of an
existing abstraction,

.« contains a nonexported default implementation C(7) of that
abstraction,

+ exports the type of associated directory objects,
+ contains a non-exported default directory object implementation,

+ exports a variable holding a directory object retumning (and/or
retrieving) objects of type T, and :

+ exports a variable holding a standard directory object returning (and/or
retrieving) objects of the default implementation.

Figure 2.10 illustrates the canonical module structure. The standard directory
is held by a variable exported read-only to prevent external destruction of this
reference. Read-only export is indicated by a dash following the name, e.g.
stdDir-.

55

] pir (Odir ()stdDir- | Bxported part

StdDir Private Part

Figure 2.10 - Canonical Module Structure.
The following module interface skeleton results:

DEFINITION Ts;
TYPE
T=POINTER TO RECORD ... END;
Dir = POINTER TO RECORD
PROCEDURE (d: Dir) NewO (...
PROCEDURE (d: Dir) New1 (...

T
T

PN

END;

VAR
dir, stdDir—: Dir; (xconfigurable and fixed (standard) directory objectsx)
END Ts.

The New procedures defined for the directory object are supposed to perform
different initializations of the returned object and/or to retrieve the returned
object at different places. For example, a file system's directory object would
at least provide procedures for creating new files and for retrieving existing
files. Often, a refined directory object is supposed to forward unresolved
requests to a more basic directory object. For example, a file directory object
additionally supporting access to remote files may forward requests for local
files to the standard file directory object. In general, it is a configuration issue
to which directory object unresolved requests are forwarded. Configurations
often resort to eventually forwarding to the default implementation provided
by the defining module. Therefore, a canonical module also exports a
standard directory object, and typically does so using a read-only variable to
prevent external destruction of this configuration anchor.

The module name is often chosen to take the plural form of the name (e.g. Texts) of
the defined main abstraction (e.g. Text). In [Nel91] it has been proposed to use the
name of the main abstraction as module name (e.g. Text) and to uniformly name the
type of that abstraction T. This convention was adopted in [Wil89], but leads to less
readable code within the defining module, and is irritating if more than one type is
exported.

56

244 System Structuring: Summary and Consequences

Several current type-safe object-oriented languages (e.g. Simula, Oberon-2)
identify subtyping with subclassing. Separating the two issues anyway leads to
a type hierarchy formed using abstract classes, where the concrete classes are
attached as leaf nodes. Hence, the merged type/class hierarchy is mainly a
hierarchy of abstractions (types), where the leaf nodes provide
implementations (classes).

This approach leads to an easily understood hierarchy: Complicated
interaction of classes via self-recursion is reduced and indirect recursions
spanning multiple subclassing levels are mostly eliminated.

Another argument against extension of concrete classes is the negative
effect on extensibility. If two separate extensions of a concrete class exist, they
form branches that are hard to combine. The reason is the implicit forwarding
to inherited code (subclassing) instead of the explicit forwarding to another
object. Figures 211 and 2.12 illustrate this: In the case of explicit forwarding it
is easy to combine two extensions by configuring the forwarding relation
appropriately (a). In the case of inheritance from concrete classes such a
combination is hard to do (b). To solve the problem in this case it is necessary
to introduce a glue class (c) that does the forwarding to an auxiliary object.

A system designed to be extensible must be expected to be extended by
different users in parallel, hence creating separate extension branches.
Sometimes such extensions are incompatible anyway, but if they are not it is a
good idea to support re-combination of separate extensions to achieve the
combined effect of the extensions for a single object. Again, it would be
useful if the forwarding style is more explicitly supported by the programming
language (cf. 4.4).

(a) Classes as Leaf Nodes (b) Classes as Inner Nodes (¢) Auxiliary Glue Classes

Figure 2.11 - Subclassing of Abstract Classes and of Concrete Classes — Introducing Glue Classes.

57

(a) Classes as Leaf Nodes (b) Classes as Inner Nodes (¢) Auxiliary Glue Classes

Figure 2.12 - Forwarding Relations in Cases (a), (b), and (c) of Figure 2.11.

To summarize, the use of code inheritance to implement extensions is of
limited use. In fact, the use of inheritance to maximize code re-use has been
found to be a useless design principle, e.g. [Mag91], just as the introduction
of procedures to maximize code factoring is.

However, there are places where code inheritance is recommended and in
fact essential, an important example being abstract classes defining and
maintaining certain invariants. Such invariants are established by appropriate
concrete methods. These are usually overridden in subclasses to add further
invariants. For example, an abstract class may need to guarantee that one of
its fields is always within a certain value range. First of all, the field can be
exported in a read-only fashion. Secondly, an update procedure can be
provided that checks the range. If it is expected that a subclass should behave
in a specific way when the field gets updated, it is important to use a
type-bound procedure.

2.5 Supporting EOO

The term Extensible Object-Oriented (EOO) programming has been
introduced in Subsection 1.1.2. In Subsection 2.1.3 the need for supporting
EQO in an operating system has been stressed. Finally, in Subsection 2.1.4
required operating system features have been listed. For each of these
features, this section locks at detailed requirements. Details on possible
implementations of such features follow in Chapter 3.

251 Generic Object Manipulation

Generic object manipulation is the key feature of object-oriented systems and
becomes manifest by means of polymorphic variables. Usually genericity is
achieved by binding procedures to variables, based on the type or class of the

58

object held by the variable at invocation time. For some operations genericity
requires special support, though. This can be achieved by adding certain
meta-programming facilities to a system or a language: Facilities that allow a
program to acquire and, in principle, to change information about another
program's execution environment [KRBx91]. If a program operates on its own
execution environment, meta-programming is called reflection. (A general
treatment of reflection features may be found in [GWB91].)

For example, a generic object internalization mechanism needs to retrieve a
class by its name and then create an instance of that class. As the number of
cases to cover generically is not fixed, the object creation cannot be based on
a case switch. Instead, the system (or the language) needs to provide means
to get an externally unique name for a class, and to retrieve a class by its
name again. Also, the system (or the language) needs to support object
creation parameterized by a class. The following pseudo code sketches the
situation:

WriteObject (s: Stream; o: Object);
VAR n: ClassName; ¢: Class;
[I ¢ := ClassOf(0); n := ClassNameOf(c): WriteName(s, n); o.Write(s)]

ReadObject (s: Stream): Object;
VAR n: ClassName; c: Class; o: Object;
I ReadName(s, n); ¢ := ThisClass(n); o := NewOf(c); 0.Read(s); RETURN o)

Obviously, generic object creation, externalization, and internalization requires
meta-programming, i.e. run-time introspection of (part of) the type system. At
least the four operations (example above) ClassOf, ClassNameOf, ThisClass,
and NewOf need be provided. Further introspection facilities, e.g. to traverse
the fields of an object in a generic fashion, may also be provided. In general,
the need to load modules on demand occurs (cf. 2.5.2), which requires
meta-programming support for modules. Typical operations are
ModuleNameOf and ThisModule, retuming the name of a module and
retrieving a module by name, respectively. The latter invokes the module
loader if the requested module has not yet been loaded.

System support for meta-programming can be avoided by adding meta-capabilities to
the used language. For example by using a second-level type system, as in the language
Quest [Car89]. Then, every type is an element of a second-level type, a so-called kind,
just as normal values are elements of normal (first-level) types. This is sometimes called
"making types first-class objects of the language’. A variable t of kind K may hold all types
that are elements of K. Let TeK be such a type. Then an instance of T may be created by
assigning T to t and requesting creation of an object of the type given by t. As an
analogy, kinds are for types, what higher-order functions are for functions.

When introducing kinds to a language, it is natural to ask for the type of kinds, i.e. to
ask for third-level types, and so on. The Metaclass concept of Smalltalk [GR83] models
this kind of multi-level meta-programming, where the behavior of classes is modelled

59

by making all classes instances of metaclasses. While Smalltalk is untyped, it does
provide a strong class concept and meta-programming is supported on the class level,
The seemingly infinite regress of meta-metaclasses in Smalltalk is broken by
introducing a circular construct which identifies the metaclass of all metaclasses, i.e.
which collects all meta levels above the second one into a single abstraction,

Instead of providing the illusion of an n-level type (or class) system, or providing a
type system with exactly two levels, one may use a conventional (single level) type
system and support all higher meta levels by means of system services. This still requires
the extraction of type information, and is typically done by the compiler. However, it
relies on using low-level features of the language to support meta-programming outside
of the fanguage. This way, types are represented by objects encapsulating compile-time
information. Such objects are of a normal type, say a pointer to an opaque record,
defined using the normal type system.

252 Dynamic Loading

The notion of extensible object-orientation opposed to (plain)
object-orientation (cf. 1.1.2) requires the possibility of separate compilation. If
units of separate compilation are called modules, then this requirement can be
made more specific in terms of modules. To do so, the requirements
developed in 1.1.2 are quickly recapitulated.

First of all, a module should be compilable without requiring the source
code of imported modules. This is essential for extensible systems, as
otherwise all sources must be present at any one time (which is the case in
Smalltalk).

Secondly, compiling a module should have no effect on the correctness of
imported modules. Surprisingly, this is violated in otherwise rather modem
languages. For example, Eiffel [Mey88] was known for certain breaches in its
type system (unsafe covariant typing), rendering type correct programs unsafe.
To fix this situation, the newest version of Eiffel (version 3) [Mey92] adds a
second level of type checking, called system-level type checking. The idea is to
check an entire system for potential typing problems. However, this makes it
possible that adding a new component to an existing system may exhibit a
typing problem in one of the previously existing components! Such a situation
is clearly unacceptable in an EOO setting: Adding a new component should
by no means cause the static checking of a previously accepted component to
fail.

For separately compilable modules, the next step is module loading on
demand. This requires references to an unloaded module to be detected, the
missing module to be retrieved from some secondary store, recursive loading
of all imported but not yet loaded modules, and linking of the loaded
modules with the imported ones. Finally, the newly loaded modules need to
be initialized to establish initial invariants. A module should be initialized after

60

initializing all of its imports. Care must be taken if cyclic imports are
supported: For modules contained in an import cycle there is no natural
initialization order, which is another good reason for avoiding cyclic module
dependencies.

The demand for loading a module occurs either directly or indirectly. The
indirect case is straightforward and happens when an imported module
needs to be loaded. The direct case occurs when the name of a module
somehow becomes available and the module corresponding to that name is
asked for. Examples for the use of module names are user commands and
generic internalizations. A user command may be identified by a pair (module
name, command name); commands are explained in more detail in 3.4.8.2. As
explained above (2.5.1), generic internalization is based on using the name of
a class to retrieve the class. This requires retrieving the module that defines
the named class. Hence, the pair (module name, class name) is used to actually
identify a class. In both cases, retrieving the named module may cause its
loading.

Once a module is loaded, meta-inspection of its features may become
necessary. For example, the exported classes (or types) need be retrieved by
name. The same may hold for other entities like user commands, where a
command is just an exported parameterless procedure, again retrievable by
name. Also, it may be useful to reflect on the import graph spanned by the
loaded modules.

253 Garbage Collection and Finalization

Garbage collection and (generalized) finalization support has been motivated
above (2.1.4). To summarize, garbage collection is required in an extensible
system since explicit deallocation always has the potential of introducing
dangling pointers or memory leaks. However, the implicit deallocation of
objects using a garbage collector also prevents secondary actions to be taken
as soon as an object gets collected. If the garbage collector calls a special
method of an object just before it gets collected, the object is said to be
finalized. Finally, if an object is ever to be collected it first must become
unreachable. This stands in contrast to identity directories. An identity directory
maintains at most one copy of objects of a certain kind. Thus an identity
directory holds references to all objects it contains, effectively preventing
garbage collection of these objects. However, it is usually safe and expected
that objects that are held by an identity directory but are otherwise
unreachable first get deleted from that directory and then get collected.

The whole idea of supporting garbage collection, finalization, and identity
directories for extensible object-oriented systems is based on safety concerns.

61

Assuming perfect correctness of all components (including all upcoming
extensions), these problems can be solved more directly and more efficiently.
However, perfect correctness — at least of upcoming extensions — cannot be
expected, and safety is a key issue. Therefore the garbage collection,
finalization, and identity directory services should be safe, i.e. should
themselves be robust to ill behavior of client code (as long as clients are
implemented using the safe subset of the language, cf. 2.4.1).

For finalization to be safe it is important to correctly handle objects that as
part of their finalization method re-establish reachability of themselves or
other objects, or that create new objects. Also, a correctly implemented object
must be able to trust that it will disappear after being finalized.

If garbage collection is based on reference counting [Col60], the eariest
moment to deallocate an object is when the reference count of that object
drops to zero. Therefore it is straightforward to call a finalization routine for
the object just before collecting it, check whether its reference count is still
zero, and if so deallocate the object [AN88][Atk89]. However, reference
counting introduces a significant extra cost during normal operation and
cannot collect cyclicly related objects.

More general garbage collection techniques are based on an asynchronous
detection of unreachability: The unreachability of an object is not immediately
detected but only after completion of a global analysis performed by the
garbage collector. Several such garbage collection techniques exist [Knu68]
[Coh81], including modern refinements to minimize the overhead for systems
with high garbage creation frequency [Ung84][Wil92]. For all these algorithms
the finalization problem becomes hard: Calling the finalization method of an
object may in principle invalidate the results of the reachability analysis. A
radical solution would be to finalize a single object at a time and to re-do the
reachability analysis afterwards. While this would work, the implied costs
would be unacceptable by far.

A solution described in [Atk89] are weak pointers. Here, the garbage
collector checks for reachability by only tracing normal (strong) pointers.
When detecting that an object became unreachable by means of strong
pointers, remaining weak pointers to that object are invalidated, i.e. set to NIL.
Hence, a weak pointer has the semantics of a strong pointer except for the
possibility that it may automatically turn NIL. [Atk89] also introduces so-called
forwarding objects, where a forwarding object has the same intetface as the
object it forwards to, but implements it by merely forwarding all requests.
[Atk89] describes how weak pointers can be combined with forwarding
objects to implement finalization and identity directory mechanisms in a safe
way. Hence, weak pointers and forwarding objects can be considered building
blocks useful to construct higher-level services. However, this assumes that
weak pointers are used quite infrequently, since the implementations

62

proposed for finalization and identity directories are rather inefficient. To give
an impression of the resulting solutions, Figure 2.13 shows a data structure
used to implement finalization and identity directories by combining weak
pointers and forwarding objects.

References

weak
from Clients pointer
X
of |
strong
pointer

]
|
i
|
|

Auxiliary structure

Figure 2.13 — Combining Weak Pointers and Forwarding Objects.

Finalization support for object X: The object gets registered in a special
auxiliary structure using a strong pointer s. All other references to X are indirect
by means of the forwarding object X, where X' is registered in the same
auxiliary structure using a weak pointer w. As soon as X' becomes
unreachable and this is detected by the garbage collector, w becomes NIL. By
periodically inspecting the auxiliary data structure, entries with s#NIL A w=NIL
can be found, and the corresponding object can be finalized. By scanning the
auxiliary structure to retrieve existing objects, an identity directory can be
provided. Then each search request is answered by returning a forwarding
object instead of the found object.

Weak pointers are not as light-weight as it seems. First of all, the garbage
collector should notify implementations of auxiliary structures' as the one
explained above. Otherwise, each such structure needs to be scanned at
arbitrary intervals to look for finalization candidates. Secondly, the complexity
introduced to the garbage collector in order to look for weak pointers and
invalidate them appropriately is noticeable. These two problems can be solved
by requiring explicit registration of weak pointers [Rov841[WDH89]. Thirdly
and perhaps most importantly, the use of forwarding objects introduces a
run-time penalty for every access to a finalizable object. Also, it becomes hard
to support directly accessible fields in objects, as the access to such fields is
not controllable by forwarding method invocations.

Another issue is the safe support of weak pointers and forwarding objects,
which easily becomes an issue of the used programming language. However,
having weak pointers or forwarding objects as a language construct makes the
concept even more heavy-weight.

63

A proper compromise may be reached by merging garbage collection,
finalization, and identity directory services. The idea is to explicitly register
finalizable objects, and to use the registration mechanism at the same time to
implement identity directories. The registration structure is known to the
garbage collector. Thus it can be utilized to almost avoid additional costs if no
finalizable objects are registered: For each registered object a (usually small)
cost is added to the garbage collection time. Accesses to registered objects are
just as efficient as for other objects. Figure 2.14 illustrates the principle, an
implementation is described in Subsection 3.4.2.

References from Clients

Figure 2.14 - Integration of Garbage Collection, Finalization, and Identity Directories,

The registered objects are linked using sort of weak pointers, where the list
forms an identity directory. The location of these weak pointers is directly
known to the integrated garbage collector; for other purposes weak pointers
are not supported. After marking, the collector traverses the list and picks
unmarked entries for finalization. All subtle interactions of garbage collection,
finalization, and identity directory services are fully encapsulated in a single
component of the system. Therefore, instead of introducing weak pointers as
a language concept, the unsafe subset of the used programming language
(e.g. module SYSTEM) can be used to implement weak pointers.

Of course, this approach reduces flexibility to a certain degree: The building
blocks used to construct the integrated service (e.g. weak pointers) are not
individually available. However, during the Ethos project these building blocks
were never needed. Identity directory services on the other hand are heavily
used in the Ethos system. Finalization is used less frequently, but proved
useful in some subtle situations. (For an example cf. 3.4.5, covering the Ethos
file system.) To increase the efficiency of searching identity directories it is
possible to organize the structure holding finalizable objects in a more refined
way than by using a single linked list. (In Ethos a list of lists is used and
objects are registered in at most one of these lists.)

254 Treatment of Exceptions

{n Subsection 2.1.4 it has been argued that exception handling of a certain
kind is crucial for extensible systems. The point was that the correctness of an
extension called from within a base service cannot be guaranteed. Hence, the
calling service will need to handle exceptions occuring during execution of
the extension, if it has to guarantee invariants.

The main problems with exception handling are: How to handle the
complicated flow of control that results if an exception occuring at one place
is caught at another, and how exceptions interact with a strong typing
scheme. In principle, one may introduce a language feature to handle
exceptions, e.g. similar to Modula-3 [Nel91]:

TRY S; EXCEPT eg =5 Tp | €9 =5 T4 | ... €7 => Typ—q END;
Sk

Here, S is a statement that may raise an exception. If it terminates normally,
execution proceeds with statement ;. However, if one of the exceptions, say
¢ is raised, the respective handling statement T; is executed before continuing
with $. If an exception occurs which is not listed, or if a handler raises an
exception, the TRY statement itself raises an exception.

A problem is: How can the programmer of the TRY statement know which
kinds of exceptions can occur? If S; invokes a late-bound procedure, the
possible exceptions that can be raised need be declared together with the
signature of the procedure, and occurrence of other exceptions would have to
be prevented by the compiler. In conjunction with extensions, declaration of
possible exceptions becomes problematic. For example, a procedure P bound
to a type T may be declared to raise exceptions out of the set Ep. Then, for a
subtype 7" of T, an overriding procedure F' is forced to raise exceptions out of
a set Ep, where Ep ¢ Fp must hold. This exhibits a conflict: On the one hand,
the extended procedure performs refined operations and may meaningfully
raise new exceptions. On the other hand, the base type may be the only one
known to a client, and it guarantees that only exceptions out of £, will be
raised. Since the exception set may be considered the type of an
out-parameter of an exception raising procedure, the described conflict is just
a special case of the covariance problem (cf. 1.1.3).

In fact the proper integration of exception handling mechanisms into
object-oriented languages is an open research issue (e.g. [Don90][Lac91]). A
certain trend can be observed, treating exceptions as objects passed to
handlers. This way, an exception is an instance of (a subtype of) a type, and
handlers can deal with general exceptions or with refined "sub-exceptions'.
For example, this approach has been taken in the latest C++ release [ESIQ].

65

Instead of introducing a language-level concept, support for exception
handling may be offered by the system. In practice, for Ethos a rather simple
approach proved sufficient (3.4.1). The idea is to provide a central stack of
exception handlers. Code that needs to guarantee an invariant pushes an
exception handler before invoking a critical operation. After successful
completion, the exception handler is popped again. However, if the operation
terminates exceptionally, the system calls all exception handlers currently on
the stack in LIFO order. Each called handler checks and perhaps re-establishes
invariants.

HandleException

T..7
Critical
[[push(HandleException); ...; Pop(HandleException)]]

This concept is quite coarse, as it eventually terminates execution completely.
If the system supports multiple threads, only a single thread will be
terminated. in a single-threaded system, things are more complicated. There,
after executing the last exception handler, the system has to restart, probably
following some configuration settings. It may be useful to allow exception
handlers to install some tasks that will complete or restart work that was in
progress when the exception occured. However, often it will suffice to inform
the user, as in general it is not expected that the cause of the exception can
be resolved automatically.

To conclude, rudimentary exception handling is required to allow an
extensible system to guarantee critical invariants in the presense of erroneous
extensions. Whether exception handling is raised to a language concept or
not, and whether resumption of execution after exceptions is done in a fancy
way, is an entirely different issue. Such refinements of the exception handling
strategy may ease the life of the programmer (if uncontrollable exception
sources are a problem), but have no influence on safety aspects of a system.

2.6 Other (Traditional) OS Functionality

Besides the specific OS features detailed in the previous section, there are
many more traditional OS features, many of which need be covered in an
effective OS design. This section contains a brief survey of the more important
features, while Chapter 3 adds details and decisions regarding the Ethos
system. Hence, the following is mainly meant to recall the relevant aspects
before looking at the concrete Ethos system. No evaluations or justifications
are given in this section — decisions made for a concrete system should take

66

the context into account, i.e. there is no decision that in tself is right or wrong.
Instead, the whole system and its application domain must be known to
arrive at proper decisions.

Device Abstractions. A computer consists of a variety of physical devices,
including processing and memory units, peripheral devices adding secondary
storage, and input/output channels. To simplify the context of program
execution, an operating system hides the physical devices and their intrinsic
subtleties by defining logical devices. A logical device fulfills a certain, clearly
defined specification and abstracts from the used set of physical devices that
implement the logical device.

Multiprogramming. An important device in every computer is the processing
unit. Many operating systems provide an abstraction of the processor (or
processors) that allows to execute programs under the assumption that a
potentially unlimited set of processing units is available. Historically, this was
done to support multiple users on a single machine: While queueing theory
shows that processing entire jobs at a time leads to the shortest average
service time, it leads to unacceptable delays in an interactive setting where
one user has to wait for the completion of another user's task.

Memory Management. Another important resource is the memory system.
Adequately managing the memory is usually a cornerstone of every operating
system. Systems that fail to manage memory efficiently and effectively are
rendered useless. Typical operating systems provide memory abstractions that
allow programs to execute under the assumption that the system has a
potentially unlimited set of almost arbitrarily sized memory blocks.
Historically, this was done to mask small primary memories by automatically
swapping from and to secondary stores (e.g. demand paging). Another
important issue is the support of multi-programming in a multi-user setting:
unintended side-effects via shared memory are to be avoided.

Protection. The tendency to use a single computing system for many different
tasks issued by different users having different authorization levels leads to the
problems of resource protection. Besides physically protecting devices by
locking them away, robust logical protection becomes a necessity if multiple
users are supported simultaneously. The range of possible protection
strategies is wide: It spans from simple login passwords, to protection of
specific resources, up to specific access protection for individual operations
on individual objects.

User Interfaces. An aspect of growing importance is the support of a uniform
yet powerful user interface. While early system designs used command line
oriented interpreters (shells), more modern designs are centered around
graphical user interfaces following direct manipulation principles.

67

Administrative Support. Finally, but quite important in commercial settings, an
operating system may automatically evaluate cost functions. Thereby users
can be billed for used resources. Also, cost functions enable fair scheduling: \f
two programs compete for a certain resource, the one that used up less
resources in its execution history could be preferred.

69

3 Ethos: A case study

A system which is extensible to everything short of infinity.

(Whitney, 1875)

The Ethos System serves as a vehicle to validate the ideas detailed in the

previous chapters. As such Ethos can be seen as a case study. To avoid the

touch of Ethos being a toy system, great care has been taken to ensure that
the system is actually running and usable.

Analyzing the implications of conceptual work is particularly hard when
engineering a complex system. A multitude of interacting design decisions
need be taken; often it is not clear if all interrelations have been judged the
right way until after a prototype of the system has been built. Hence, a strong
motivation for building prototype systems in an engineering field is the
experimental judgement of the validity of design decisions. Where this kind of
judgement is felt important, the corresponding system may be classified as a
real system.

This stands in contrast to disciplines investigating isolated problem
domains. The need for prototyping systems in the engineering fields should
not be misunderstood as insufficient understanding of the problem domain. It
is often so that complex systems are their own most adequate model, i.e., no
adequate model of the system exists that is significantly simpler than the
system itself. Hence, the scientific approach of analyzing models at a
sufficiently high level of abstraction often fails for real systems. Either the level
of abstraction is set so high that relevant details of the modelled system are
missing, or the model itself is more complicated to understand or analyze
than a prototype of the real system would be.

In a sense, the prototype is the simplest model of the system. However, if the prototype
is meant to be refined into the final system, this distinction is blurred. Also, several
types of prototyping may be distinguished, e.g. architectural, explorative and evolutionary
prototyping. While architectural prototyping aims at validating and judging design
decisions, explorative prototyping is used to explore the space of possible design
decisions. Evolutionary prototyping refers to the method of starting with a small kernel
system and incrementally improving it to meet requirements. As such it is also a
product development techniqgue. The Ethos project aims at supporting all three kinds of

prototyping.

70

3.1 Motivation and Goals

314 Why Another OS?

Applied studies of extensibility on various levels of abstraction require systems
that themselves span a multitude of abstractions. An operating system, in the
vague sense of the term sketched in the first chapter, by its very nature spans
a wide range of abstraction levels. This makes operating systems ideal objects
of study.

Most existing operating systems support extensions only on top of the
operating system. This prevents extending the core structures and
mechanisms of the operating system itself. Therefore, some systems reduce
the "hard-wired” part of the system to a so-called micro-kernel, allowing for
extensions on all typical OS abstraction levels. However, the use of a
micro-kemel alone does not solve the problem of how to structure an
extensible operating system. (In fact, concentrating on the micro-kernel design
means swapping out most problems to components "out there somewhere".)

Finally, designing a new system from scratch opens many opportunities
[Wir89]. For example, it can be studied how to bootstrap a system on a bare
machine. Also, the number of design decisions bound by external constraints
can be kept small. Last but not least, designing from scratch gives a certain
guarantee that problems will be solved completely. This stands in sharp
contrast to designing a system by layering it on top of an existing system. In
the latter case inadequate design decisions are often caught by adapting
behavior of the host system.

A short example may illustrate this point. When designing a file system, the buffer
management policies are very important for the overall system performance. However,
when the file system is based on a host file system, the best buffer management policy
may be not to buffer at all and to rely on the host system's buffering. Even worse: If
complicated buffer management strategies are devised, it gets hard to measure their
effectiveness, as all measurements see an interference with the strategies of the host
system.

Considering modern caching hardware, this point seems to get weaker. This is not
so, since the predictability of the overall system's behavior is reduced with each
additional layer. Hence, sitting on top of a host operating system is even worse, when
that system itself is already competing with heuristics burned into the hardware,

71

31.2 A Case Study: Concentrating on Important Points

Based on the argumentation above, it was decided to design a system on a
bare machine. The effect of solving problems by delegation to an underlying
system has thus been avoided. However, the amount of work induced by such
a decision is not negligible. Many small wheels have to be reinvented, always
keeping the big picture in mind. Therefore it is especially important to
concentrate on the essential.

One of the most influential decisions taken was that everything should be
realized using a single (programming) language. The obvious aims for all levels of
the system are: A high degree of readability and understandability, the
possibility of easy restructuring, and a reduction in development cycle times.
Hence, the trivial choice of using assembly language on all levels fails. Instead,
a single high-level language is needed that can adequately cover a broad range
of abstraction levels.

The Ethos system contains not a single line of assembly code (but see the
remarks below) and no new languages have been introduced for its
application-level tools. For example, all device drivers are written in the same
language that is also used to describe configuration settings. At a first sight
this seems quite a chore. First of all, it contradicts the often made claim (e.g.
[Ben88]) that using "little languages” geared towards a particular purpose is
preferable over a single "does it all" language. Secondly, one might argue that
a language handy enough to perform user level configuration tasks might not
be efficient enough to code a device driver. Or, conversely, that a language
supporting the effective coding of low-level functions is just not adequate for
manipulations at the user level. This might be called the semantic gap
argument. Thirdly, a language covering all the needs seems doomed to be
overstuffed with concepts and features, making it difficult to learn and
master. While such arguments have some truth in them, misconceptions are
their usual cause.

Using little languages. If a language is tailored to support a particular tool, it
can be small and concise. However, if a user has to master many tools, the
union of all the language concepts must be learned. The UNIX system with its
special languages for shell scripts and dozens of tools has demonstrated this
clearly. Also, if tools are used in combination, the individual tool languages
interact in a way leading more to a Cartesian product than to a union of the
concept sets. The resulting combinatorial explosion of facts that the user
needs to know is felt unacceptable.

Semantic gap. Considering again the script languages of the UNIX system it
is all to obvious that a "userlevel” language that is powerful enough to grow

72

with the user's demands is by no means simple. All the essential concepts of
programming need be there. However, instead of using a sane programming
language, many such script languages are ad-hoc conglomerates of features
that have been added as needed. Other userlevel examples are database
query languages like SQL. Here, the tendency is to add new structures to cover
all computable functions. (Standard SQL is limited to primitive recursive
functions.) Then again the result is a complete programming language.

The converse argumentation is a little bit more fruitful. A language capable
of expressing device driver code almost certainly is of imperative nature. Thus,
using a single language on all levels either asks for a so-called wide-spectrum
language (e.g. [B%85]) or forces application-level programming to follow the
imperative paradigm. The former approach so far led to languages being
rather large indeed, while the latter case may seem overly restrictive. However,
it is hoped that adding the object-oriented flavor to an imperative language,
most needs can be covered.

Conceptual OverStuffing. The expressive power of a language does not
simply correlate with the amount of concepts provided. A few concepts,
carefully chosen by the language designer, can well add up to a language of
sufficient generality and power. Of course, care must be taken not to fall into
the other extreme: A minimal set of completely orthogonal concepts can
often be improved by adding a few redundant concepts. A classical example
are control constructs. In theory, a single concept (say while loops) suffices
for a language to be Turing-complete. In practice however, a small set of
redundant concepts (say recursion or conditionals) is more adequate to allow
frequently occuring patterns to be expressed in a natural way. This is where
the language designer's wits get in. ~

The language chosen to implement the Ethos system is Oberon-2 [MW91].
The selection criteria can be split into two categories. On the one hand,
several years of experience with the Oberon system [WG89][WG92] proved
the language Oberon [Wir88a] useful for almost all purposes. (The next
section explains how the Ethos system relates to the Oberon system.)

On the other hand, several concepts that are hard-wired within the Oberon
system are made extensible within Ethos. This is particularly critical at the
level of interfaces that need to support a high throughput at a small
granularity. An example is the file system, where individual bytes may cross
the interface. In Ethos, byte or character streams and primitives accessing the
bitmap display are the most critical interfaces. Section 2.3.3 explained the
Carrier/Rider Separation concept. Putting this concept forward into a practical
implementation implies adding indirections that affect just these bottleneck
interfaces. The Oberon concept of message records (more on this below)
dispatched by message handlers is too expensive to be applied on this level.

73

Early experimental versions of the Oberon text system were based on message
handling. Since the resulting text system was prohibitively slow, the extensibility of the
text system was sacrificed and the interface cast into a set of normal procedures.

The problem with Oberon when applied to object-oriented interfaces on a
fine-grained level is that its message concept is too general. If a redundant
concept would be added such that the programmer could specify the cases
where the full generality is not required, more efficient solutions would be
possible. An approach taken in Oberon-2 is the addition of type-bound
procedures (also called methods). Such procedures almost perform like
normal procedures as far as their efficiency is concerned [MTG89]. However,
the decision which actual implementation to use is delayed until execution
time. For type-bound procedures, the first parameter is treated in a special
way. Its actual parameter's type (hence the name "type-bound”) is inspected
to select the appropriate procedure implementation. Since the Oberon type
extension scheme allows a variable of a certain type to hold an object of a
type that is an extension of the variable's type, the introduction of type-bound
procedures leads to an efficient form of late binding.

Type-bound procedures are less flexible than message handlers. However,
besides performance advantages, the reduced flexibility is often welcome: The
degree of freedom available when using type-bound procedures is limited by
specification. To put it in other words, the possibility of specifying the minimal
set of procedure signatures available for a certain type increases the
effectiveness of the type system and thus the scope of static checkability.
Furthermore, since it is not possible to change the binding of a type-bound
procedure at run-time, the set of such procedures attached to a certain type
forms a strong basis for expressing invariants: It is impossible to invoke an
inadequate procedure for a certain object.

Additionally, the use of type-bound procedures increases the readability of
a program. The guiding idea is that one should not introduce more flexibility
at any one point than is felt absolutely necessary and that these decisions
should be reflected by the type system as accurately as possible. Naturally,
such decisions can be mistaken. However, the possibility of taking wrong (i.e.
overly restrictive) design decisions should not be traded against the
impossibility of static program checking. (For languages and systems like
Smalitalk this is just the case. Nearly no errors can be detected until after a
program is run and actually has reached a state in which it fails.)

To conclude, Oberon-2 is a complete superset of Oberon. Besides
type-bound procedures it adds a few other concepts. The most important
ones are the possibility of declaring read-only exported variables and the
support of variables of type open aray. Both features increase the
expressiveness of the type system in a natural way. Examples for their
beneficial use follow in the subsequent sections covering selected Ethos

74

components.

3.2 Ethos as an Evolutionary Successor of Oberon

Standing on the Shoulders of One's Predecessors, (lsaac Newton)
Standing on the Toes of One's Predecessors. (Paul Feyerabend)

Ethos is an evolutionary successor of the Oberon system in the sense that
many of the fruitful ideas realized in Oberon have been retained within Ethos.
One way to look at the Oberon system is to view it as an environment
supporting rapid development of programs. Such programs span the range
from libraries and tools to applications and user interfaces. However, many
parts of the Oberon system are fixed and cannot be changed without
replacing some of its modules. Of course, such replacements immediately
endanger the stability of the system and often cannot be done without
rebooting the system, always risking its complete failure.

An important aim of the Ethos project was to enlarge the range of
extensibility, i.e. to push down the limits of things that are burmed into the
system and to allow most services to be implemented equally well by
extensions. With a few exceptions this has been achieved. Before looking at
details of the Ethos system, the following covers an analysis of advantages and
limits of the concepts found in Oberon.

3.21 Strong Concepts of the Oberon System

Oberon supporits commands: Any exported parameterless procedure can be
invoked by the system and thus may setve as a command issueable by the
user. A command implements an atomic action of the user applied to global
data structures. This leads to the second important concept: All data
manipulated by the user are anchored in the system'’s global state. When a
command terminates the global state is maintained. Results of one command
are readily available to serve as arguments to the next command. Due to the
static checking capabilities of the Oberon compiler (enabled by the strong
type system), commands usually leave the system intact, even when
terminating abnormally. This is important when developing programs.

Usually, the global state of the system is anchored within the (itself globally
anchored) viewer system. Thus, instead of referring to abstract data (i.e. by
means of file names or by "piping” data from one command to another) the
typical Oberon command evaluates the contents of existing viewers and
creates new viewers. By marking a viewer or (pait of) a viewer's contents, the
user has full (visuall) control over the evolution of data modified by a

e ——— A A et

75

sequence of commands. For example, simply by marking some visible text,
the user may invoke the Oberon compiler and cause compilation of the
marked text. (It is not even necessary to have the source text ever being stored
in a file.)

Having the notion of commands, the concept of applications in the sense of
isolated programs providing some packaged sets of operations is dropped.
Instead, commands are named by a pair of module name and procedure
name. When invoking a command, the system checks whether the module
implementing the command is already loaded. If not, the module and missing
imported modules are sought and loaded. This feature of Joading modules on
demand greatly reduces the initial size of the Oberon system while keeping it
open for an unlimited set of extensions.

The flexible and extensible organization of Oberon makes earlier languages
like Modula-2 [Wir82] inadequate. For example, the viewer list needs to hold
variants defined by extensions, i.e. is a heterogeneous list. Since extensions
are loaded on demand, the set of viewer variants is not closed, rendering
solutions based on variant records impracticable. To allow for heterogeneous
structures, in Oberon the notion of type extension has been introduced
[wirB8al.

Type extension allows the declaration of a record type, say T7, to be based on some
existing record type, say 7. Then 77 is called an extension of T and T is called the basetype
of T1. For every variable of type pointer to T, an assignment of a pointer to T1 is allowed.
Hence, the type of a variable and that of an object the variable refers to may differ: The
variable becomes polymorphic (inclusion polymorphism, ¢f 1.1.1). Similar rules exist for
reference parameters of record type, where the actual parameter type may be an
extension of the formal parameter type. Mechanisms are provided to test an object type
(type test), and to guard a variable such that fields defined by the extended type may be

accessed (type guard). Together, these type extension mechanisms fulfill the demands
stated above.

An often posed criticism is the single-threaded nature of Oberon. In many
conventional systems the need for multiple processes occurs just because the
running system is seen as a collection of running applications. As Oberon
considers the running system as a single extensible "application” and as all
user-interactions are based on atomic commands, the Oberon system has no
principle need for multiple processes. Indeed, the notion of quasi-parallel
execution has been abolished in Oberon (with the exception of interrupt
handlers). As a result, programming is greatly simplified (but cf. 3.4.4).

76

3.2.2 Limits of Oberon's Extensibility

Contrary to its flexibility, significant parts of the Oberon system are not
extensible. This is intentionally so and the primary reason is efficiency. The
Oberon system's extensibility is based on message records and message
handlers. Each extensible object has a handler attached to it by means of a
procedure variable. A handler has two parameters: The handled object, and a
reference parameter usually declared to be an empty record. The latter can
take any actual type that extends the (empty) formal type. A record passed
this way is called a message record and the handling procedure a message
handler. A handler uses a sequence of type tests to select messages to handle.
A handler may forward a message to some other handling procedure.

Enabling extensibility on system levels that are known to be performance
bottlenecks requires careful trade-offs between flexibility and efficiency. While
the message scheme of Oberon is flexible, its inherent costs are rather high.
The Ethos project aims at demonstrating that the decrease in overall
performance can be kept tolerable, even when increasing the extensibility of
critical system components. As indicated in 3.2.1, this is mainly achieved by
using type-bound procedures instead of message handlers wherever
appropriate,

By design the Oberon system has no processes. This greatly simplifies
programming. However, situations exist that require the preemption of the
current task. This is the case if time-critical extemal events must be handled
asynchronously to user events. For device handling it suffices to have interrupt
handlers briefly suspend the main task. However, if the external event requires
immediate processing at a higher level, it is not adequate to do so in the
interrupt handler. To solve such problems one might want to add a
preemptive scheduler. Ethos supports this by providing the atoms required for
adding processes of various semantics. In other words, while Ethos has no
concept of processes built into it, it provides the means for safely adding
processes as an extension.

Where are the differences between Oberon and Ethos? Ethos adds extensibility to
the core services found in the Oberon system. This includes the display, file,
file directory, and text systems. The Carrier/Rider Separation concept is
consistently used to decouple data storage from data access. A generic service
for object internalization and extemalization is available. All devices are
available through extensible services. Hence, devices that conform to an
existing device type can be integrated into the system without disruption of
service. Furthermore, applications usually do not directly create objects of a
certain type but request an instance of a certain type from a so called directory

77

object (cf. 2.3.3). For example, an application opening a text frame ta display a
text uses the directory object for text frames. By switching this directory
object, the application will use different text frames. To allow for safe
extensions, Ethos provides a largely refined finalizing garbage collector. Finally,
Ethos adds an especially lightweight concept for programming preemptive
tasks.

Why are the Ethos enhancements important? One of the primary goals of Ethos
is to support run-time integration of extensions on all levels of the system. By
enhancing the globally available directory objects, the system adapts to newly
installed features at run-time. For example, a file system providing access to
remote files may be added any time. By installing a refined file directory
object, requests for files with a certain path name can automatically be
directed to the new file system, while all other requests pertain to the
previously available file system. It is crucial that directory objects enable
run-time extensibility of applications building on objects provided by lower
layers. In the file system example, an application using files can readily use a
newly installed file system without any change.

At a first glance system configuration via directory objects seems dangerous. What if a
directory object returns an object not fulfilling minimal requirements? This is precisely
the duty of strong type checking: if the directory object by declaration returns objects of
a certain type, it is impossible to get an object not conforming to that type. Of course,
the actual implementation of the returned object may contain errors leading to
misbehavior. Certain run-time exception handling possibilities have been added to
Ethos to cope with the more fatal problems of this kind. Usually the system can recover
from such situations simply by switching back to some default directory object and by
eliminating objects depending on malfunctioning objects. As Ethos is meant to be a
programming environment, such counter-measures are usually left to the user.

Another goal of Ethos is to support the writing of portable programs, ie.
programs that are largely independent of a particular machine architecture.
This is achieved by carefully designing interfaces to abstract devices. As long as
a program does not rely on features of a specific device, the resulting device
independence is guaranteed. Additionally, a set of mapping operations is
available that allows for portable creation and consumption of files. This
includes the generic externalization and internalization of arbitrary objects,
where generic object treatment is driven by the object’s types. To enable such
type-driven operations Ethos provides access to run-time type information.
This eliminates the need for a second-level type system within the language,
but cf. 3.4.3.

78

3.3 Overview of the Ethos System Structure

The design of the Ethos system follows relatively few design principles. The
fundamental ideas behind these principles have been described in Section 2.3.
This section looks at the realization of the principles in Ethos. Specific
components will be treated in Section 3.4.

3.3.1 Modular Structure

The module hierarchy (2.4.1) of an extensible system is hard to capture as it
evolves with each installed extension. Figure 3.1 shows the module hierarchy
of a typical functional Ethos system. Importing modules are drawn above
imported modules. Top-level modules, i.e. those that ought not be imported
by other modules, have their names set in bold typeface. Modules belonging
to a minimal working configuration are boldly framed, extension modules
(existing and proposed ones) are lightly framed. The shaded area at the
bottom encloses the set of public but unsafe modules (SYSTEM is a
pseudo-module). The shaded areas in the upper middle group modules
supporting a particular data model (shown are the texts and graphics
subsystems).

Similar to the decomposition of the Oberon system [WG92], Ethos may be
understood in terms of layers. The classical "onion" model of layered systems
[Dij68] requires a layer to completely hide all lower layers. This is not so for
systems like Ethos or Oberon, where the layering has a solely organizational
nature helping to maintain an overview over the system structure. All layers
remain visible and accessible to all higher layers. Restrictions, if any, are by
convention, i.e. by recommending that higher modules ought not import
certain low-level modules. (Within limits, such conventions may be enforced
by not publishing selected module interfaces, i.e. symbol files.) The basic
Ethos system contains only the single restricted module Devices, being the
system counterpart to the language module SYSTEM.

79

[System 1 I Write J [Draw ses User Command Packages

Config Standard Configuration

l ParcElems l

eos Model Extensions

eve DataViews / Editors

Looks Standard User Intetface

ees Dafa Models

Ethos User Events

Viewers | I Stores l (RemoteMaps]

sss Derived Abstractions

- se+ Basic Device Abstractions
I Frames l [Input l l NetLink I

Modules System Foundation

Files (Meta-Programming Support)
Objects

Figure 3.1 ~ Module Hierarchy.

The module layering reflects the conceptual separation of the system into
various levels of abstraction. Additionally, it is influenced by the need to build
a foundation structure on which to stack the whole system. Therefore, certain
higherlevel functions have been moved down in the hierarchy to form the
System Foundation layer. This includes the basic object definitions, the initial
file system, and the initial module loader. (Below the foundation layer,
another module with public but restricted interface exists: Devices provides a
closure for the hardware.) The module structure above the foundation is not
fixed, ie. can be modified to customize the system. This holds for one
exception: Some module named "Ethos” must be present to enter the second
bootstrap stage (3.4.8).

On top of the foundation layer, basic device abstractions follow. This
includes real and virtual devices as well as the corresponding abstract device
interfaces. Here, devices not needed in the foundation are added. An

80

especially important type of abstract device is introduced in Frames: PixelMap,
the carder type for two-dimensional pixel arrays, together with the
corresponding rider type Frame (3.4.7). An example for virtual devices is
defined in Tasks: Scheduler, a carrier type for processor abstractions, together
with the corresponding rider type Task (3.4.4).

Building on basic device abstractions, the next layer adds derived
abstractions. A derived abstraction is based on an abstract device defined in
one of the lower layers. A typical derived abstraction is Mapper defined in
module Stores (3.4.5.2). Mapper extends StreamRider defined in Objects. A
Mapper is used to generically externalize and internalize arbitrary object
structures (e.g. texts) to and from arbitrary positionable streams (e.g. files).
Another interesting derived abstraction is the font machinery encapsulated in
Fonts which delivers specific fonts (3.4.7.3).

Having all the fundamental but still rather general abstractions at ones
disposal, the next layers add dispatching of user events (module Ethos, 3.4.8.2)
and high-level data models (e.g. Texts or Graphics). On top of the dispatcher,
the standard user interface, i.e. the common "look and feel" of the system, is
encapsulated in module Looks (3.4.8.3).

The data view / edit layer adds frames to the data models. A frame
combines the user interface and user event dispatcher functionality with that
of a specific data model (3.4.8.4). It implements the viewer and part of the
controller components as found in the MVC principle.

The last layer providing modules with a programming interface adds model
extensions. The element extensions of the text system are a typical example
(3.4.6).

Finally, top-level modules that are not meant to be imported by other
modules package user commands.

3.3.2 Rationals Behind Particular Feature Assignments to Modules

The module decomposition was driven by the aim to create safe module
interfaces. (cf. 2.4.1). Except for the pseudo module SYSTEM (provided by the
compiler) and the module Devices all Ethos modules are safe. The point of a
safe module interface is that if the implementation of a module with a safe
interface is correct, no safe client module can possibly invalidate invariants
established by this or some lower module.

As mentioned in 2.4.1, the only known loophole in the language that forces a module
interface to be unsafe is the special compatibility rule for reference parameters of type
ARRAY OF SYSTEM.BYTE. Obviously, a module using such a parameter type to return
some value cannot prevent that a client (written in the safe subset of the language, i.e.
without referring to SYSTEM) uses this parameter to over-write an arbitrary variable

81

with a meaningless value. Hence, for a module to have a safe interface, the interface
must not use reference parameters of type ARRAY OF SYSTEM.BYTE! (In Ethos, ARRAY
OF CHAR has been used instead. For a client to perform an unsafe mapping of some
data structure to an array of characters, the client has to import SYSTEM and use
SYSTEM.VAL to explicitly cause the unsafe type cast.)

Most Ethos modules follow the canonical module structure detailed in
Section 2.4.3. It was felt important to avoid clustering things into a module
when such a clustering would appear unnatural. For example, module Ethos
avoids the over-stuffing found in the corresponding module Oberon of the
Oberon system. On the other hand, sets of interrelated types have been
packaged into a single module if strong invariants between instances of these
types need be maintained. Examples are the strongly interrelated base types of
carriers and riders. (The scheme used to do so has been explained in section
241)

3.3.3 Abstractional Structure

A secondary structure is present in form of the type hierarchy (2.4.2), which is
embedded into the primary structure defined by the module hierarchy. This
secondary structure reflects the abstractional structure of the Ethos system, as
opposed to the modular structure introduced above: Almost every abstraction
in the Ethos system is manifest in form of one or more types in the type
hierarchy. The very few exceptions are abstractions implemented as services
hard-wired into a module and available only via exported procedures. Such
exceptions will be explained in detail when covering the associated module.

It is noteworthy that neither the language Oberon-2 nor the conventions of
the Ethos system require the type hierarchy to be a tree. Instead, it is a forest
where several independent trees exist, and only the largest of which is rooted
in type Objects.Object.

The type hierarchy of the standard Ethos system is shown in Figures 3.2 to
3.5, where each box contains the part of the type hierarchy introduced by the
corresponding module. The Oberon-2 type system distinguishes between
records and pointers referring to records. This distinction would clutter the
figures and hence is ignored. Also, auxiliary types that represent no significant
abstraction on their own are left out. Each type that is defined to be a subtype
of another is listed with indented position beneath its base type. If necessary,
types from imported modules are repeated, using an italic typeface and a
qualified form module.type.

82

Figure 3.2 - Foundation Type Hierarchy.

Figure 3.3 - Type Hierarchy of Basic Abstractions,

Figure 3.4 - Type Hierarchy of Derived Abstractions,

83

Figure 3.5 — Type Hierarchy of User Interface and Text System.

84

3.4 Interesting Components of the Ethos System

Besides being an existence proof for the more general design principles, Ethos
is also a working system. As such it contains solutions for many problems of
varying complexity. This section looks at some of the more interesting
problems.

The following sections contain many code fragments. To distinguish pseudo-code from
compilable Oberon-2 code, the former is expressed using an (extended) Dijkstra
notation. Especially, the semantics of do and if constructs are as specified in [Dij76].
Simple forms to declare procedures and variables have been added. Interfaces of
Oberon-2 modules are introduced using the pseudo-keyword DEFINITION. An ellipsis
(...) following the DEFINITION header indicates that only part of the module interface is
presented.

341 Interfacing to the Machine

At the bottom of Ethos module Devices provides the hardware closure
required by the higher modules in the Foundation Layer (3.3.1). Devices
supports the installation of interrupt, exception, and supervisor call handlers, the
trap dump handler, and the main procedure. Devices also contains the two
device drivers needed in the foundation modules, driving the startup and the
realtime clock. Both are used by the startup file system which in tumn is used
by the module loader to boot the system.

Finally, the memoty allocation interface is defined in Devices (the memory
is seen as a special device). The standard memory allocator (3.4.2) is
implemented in module Objects from where it gets instalied in Devices.

3.4.1.1 Installation Support

The following procedures support installation of various handlers:

DEFINITION Devices;
PROCEDURE InstallDump (DP: Handler);
PROCEDURE InstallMain (MP; Handler);
PROCEDURE InstalllP (n: INTEGER; IP: Handler);
PROCEDURE InstaliSVP (n: INTEGER: SVP: Handler);

InstallDump, InstaliMain. Whenever an exception forces the system to interrupt
the currently executing code, control passes to module Devices. Devices in
turn copies the processor state into exported variables, calls (if installed) the
dump procedure, resets the main system stacks and processor state, calls all
pending exception handlers (see below) and finally calls the installed main

85

procedure. If no main procedure is installed the 'system halts, if the main
procedure retums it gets called again.

InstalliP, InstallSVP. Assuming a vectorized interrupt system, for each interrupt
channel number a handler may be installed. Likewise it is possible to install
supervisor procedures.

Fatal errors in hardware handling functions (stack overflow, dereferencing an unbound
painter, etc.) should lead to a run-time exception, just as for other program parts.
However, hardware checks of such conditions are often disabled when executing in
supervisor made. Conhsequentially one would want to run the whole system in user
mode. Then again, interrupt handlers and operations accessing certain hardware
features are often forced to execute in supervisor mode. On the other hand, to be
extensible a hardware handler may need to perform up-calls to extensions. The
dilemma then is: How can an operation necessarily executing in supervisor mode
perform an up-call to an extension — such that the extension executes in user mode —
and continue to execute when the extension refurns?

The supervisor mode present in many machines prejudicates the way an extensible
system can be built. The InstallSVP mechanism makes code executing in the supervisor
mode extensible.

PROCEDURE ChangeContext (VAR from: SET; to: SET);

ChangeContext. This special supervisor procedure completes the breach of the machine's
supenvisor protection scheme. It allows changing the current execution context: user or
supervisor stack, and user or supervisor mode, The first parameter is returned such that
when applied as a second parameter to a second call to ChangeContext, the effect of
the first call is reverted. Note that this, just like the installation procedures, is a very
low-level feature to be used by the knowledgeable system programmer. (This is just in
the flavor of module Devices which - as explained earlier - has an unsafe interface.)

Installing supervisor procedures or switching contexts from user to supervisor mode
seem to he clear breaches in a system's safety concept. However, in Ethos the supervisor
mode is not used to prevent “application” code from accessing protected information,
but to enable access to certain hardware features not accessible in user mode.

A possibility is the concentration of all operations executing in supervisor-mode into
a single module. This has been done in the case of Oberon's Kernel module. Another
solution, which has been taken for Ethos, is to provide special means to effectively
invalidate the strict user-mode / supervisor-mode separation. On the one hand, new
supervisor procedures can be installed at any time from anywhere in the system. On the
other, contexts can be switched using procedure ChangeContext. In what follows the
worth of this rather uncommon feature of the Ethos system is discussed more
thoroughly.

3.4.1.2 Exception Handling Strategy

DEFINITION Devices; ...
PROCEDURE PushEP (EP: Handler);
PROCEDURE PopEP (EP: Handler);

86

PushEF, PopEP. As a lightweight compensation for missing exception handling
in the used language, Devices allows to push exception handlers before
executing a critical code section. If the section completes normally, the
exception handler should be poped. (PopEP uses its argument to check for
proper pairing of PushEP/PopEP calls.) If the critical section terminates
exceptionally, the system falls back into the central exception handling
mechanism. There, the exception first causes a trap dump to appear, followed
by calls to the pending exception handlers, and completed by calling the main
procedure. Exception handlers are called in LIFO fashion. The precise
semantics of PushEP and PopEP are:

eno: INT; ex: ARRAY MaxEno OF PROC;

PushEP (ep: PROC)
[if eno < MaxEno - ex[ena] = ep; eno :=eno +1 fi 1
PopEP (ep: PROC)
le=eno~-1;
doex0nex[el¥epse:=e-1o0od;
ifex0-eno=efi
I
OnException
[doeno =0 - eno:=eno—1; exlenc] od J

Typical code sequences uéing exception handlers involve up-alls to
installable extensions. The following code fragment illustrates the protection
of a global lock variable using an exception handler:

VAR lock: BOOLEAN; (*lock some global resourcex)

PROCEDUREx UpCallEP;
BEGIN lock := FALSE (xrelease resource if exception occuredx)
END UpcCallEP;

PROCEDURE UpCall (proc: PROCEDURE);
BEGIN .
Devices.PushEP{UpCallEP);
lock := TRUE; proc; lack = FALSE;
Devices.PopEP(UpCallEP)
END UpCall;

The combination of exception handlers and context switching is especially powerful. 1t
enables a low-level part of the system to perform up-calls to arbitrary user code without
losing safety, i.e. with protection against exceptional terminations. For example, the
garbage collector up-calls finalization methods in user made, but itself executes in
supervisor mode. The idea is sketched below:

87

PROCEDUREx UpCallEP; ... (xclean-up on exceptional termination of up-call)
END UpCallEP;

PROCEDURE DoUpCall (proc: PROCEDURE); (xcalled in sv mode on sv stackx)
VAR old, new: SET;

PROCEDURE Dispatch (proc: PROCEDURE); (xcalled on user stack in sy modex)
VAR old, new: SET;
BEGIN
Devices.ChangeContext(old, {Devices.umode});
Devices.PushEP(UpCallEP);
proc; (xup-call on userstack in user modex)
Devices.PopEP(UpCallEP);
Devices.ChangeContext(new, old)
END Dispatch;

BEGIN
Devices.ChangeContext(old, {Devices.ustack});
Dispatch(proc);
Devices.ChangeContext(new, old)

END DoUpCali;

Technical detail: The twostep context switch (first, from supervisor to user stack;
second, from supervisor to user mode) is done assuming that the supervisor stack is not
accessible in user mode. Hence, a single step switch would prevent access to objects on
the supervisor stack, e.g. the parameter proc resides on the supervisor stack but is used
after doing the switches.

34.2 Memory Management and Garbage Collection

3.4.21 Objects

The discussion of the Ethos memory management facilities has been divided
up into four subtopics: Memory allocation, garbage collection, object
finalization, and treatment of subobjects. All of these topics are covered by the
standard heap manager defined in module Objects. The following definitions
from Objects are relevant for the subsequent discussions.

DEFINITON Objects;
TYPE
Object = POINTER TO ObjectDesc;
ObjectDesc = RECORD
PROCEDURE (VAR O: ObjectDesc) CopyFrom (VAR o: ObjectDesc);
END;

88

FinObject = POINTER TO FinObjectDesc;
FinObjectDesc = RECORD (ObjectDesc)

PROCEDURE (F: FinObject) Finalize (VAR canceled: BOOLEAN);
END;

IdentityDir = POINTER TO IdentityDirDesc;
{dentityDirDesc = RECORD END;

HeapManager = POINTER TO HeapManagerDesc;
HeapManagerDesc = RECORD (ObjectDesc)
PROCEDURE (H: HeapManager) Install;
PROCEDURE (H: HeapManager) Getinfo (VAR alloc, free, cycles: LONGINT);

PROCEDURE (H: HeapManager) NewDir (): IdentityDir;
PROCEDURE (H: HeapManager) SafeToFinalize (f: FinObject): BOOLEAN;
PROCEDURE (H: HeapManager) Register (d: IdentityDir; f: FinObject);
PROCEDURE (H: HeapManager) First (d: IdentityDir): FinObject;
PROCEDURE (H: HeapManager) Next (f: FinObject): FinObject;

END;

VAR
heap, stdHeap-: HeapManager;

The main objects of concem of Objects are, of course, objects. Hence, the
primary type defined is Object. All that is required for objects is that a
CopyFrom method is available, i.e. that generic copying is supported. Derived
from Object, a subtype FinObject adds the finalization property by requiring
implementation of a Finalize method (3.4.2.4). A HeapManager is used to
encapsulate the memory allocation and garbage collection mechanism. The
standard heap manager is available via read-only variable stdHeap, while the
currently active one is referred to via variable heap. Objects are registered for
finalization by means of identity directories. |dentity directoties are provided by
the heap manager (NewDir), can be traversed (First, Next), and new objects
can be registered (Register). A finalizable object may doublecheck against
fake calls of its Finalize method: SafeToFinalize(f) returns true jff f.Finalize was
indeed called by the heap manager.

The special form of the CopyFrom method is important. Firstly, it is defined on the level
of ObjectDesc, i.e. the underlying record type, and not on the level of the pointer type
Object. Hence, even objects with types derived from ObjectDesc (and thus statically
allocatable), have the copying feature available. Secondly, CopyFrom has been chosen
in favor of a perhaps more intuitive CopyTo method. To maintain invariants, it is
important that the modified and not the modifying object gets control. Also, using
CopyTo one might over-write part of an object by only accessing a base-type projection.
Reading from a base-type projection using CopyFrom is equivalent to the projection
defined for Oberon record assighments [Wir88al.

89

3.4.2.2 MemoryAllocation

In Ethos, as in Oberon, all data are stored in global variables, in local variables
on a stack, or in anonymous variables in the heap. Global variables are
allocated upon module loadtime and are not deallocated until after the
module itself is unloaded. Allocation and deallocation on the stack is done
implicitly by procedure entry and exit sequences generated by the compiler.
Dynamic allocations are explicitly requested by the programmer using the
standard procedure NEW.

There are no provisions for explicitly deallocating data from the heap. This is important,
as deallocating a heap block with remaining pointers referring to it introduces so-called
dangling pointers. Dereferencing a dangling pointer is one of the most subtle kind of
errors in a program. (In fact, it is amazing to see how much time is spent in typical
programming environments to locate such errors, often by means of so-called
"debuggers". [Gri91b]) In a closed program such etrors can be avoided. However, in an
extensible system creation and life-time of pointer aliases is uncontrollable: An error in
some client module can therefore break the memory invariants otherwise guaranteed
by a host module. Writing to a dereferenced dangling pointer can destroy global system
invariants and can therefore have arbitrary effects on the running system.

The heap management fully relies on a garbage collector to reclaim storage
used by data that is no longer accessible. The technique used for allocation
and collection has been described in [PHT91], and goes back to the original
Oberon implementation [WG89][WG92]. The idea is to allocate blocks in
multiples of some minimal chunk size B (typically 16 or 32 bytes). For the first
N-1 multiples of B, special free-lists A[/], 0 </ < N-1 are used. All other
blocks (having sizes iB, i = N) are linked into a single list AlN~1]. Allocation of
a block of size s consists of computing the class K = rs/81 and removing a
block from free-list A[k] where

k2K A (Vi K<i<k Alil=NIL) A A[k] # NIL

If k=K A k< N-1, the block is consumed in its entirety and thus removed
form free-list A[K]. If kK > K v k = N-1, the block may be larger than the
requested one. If it is, the block is split into two parts, the first one being of
the requested size and returned, the second one being again a block of size /B,
i > 0. The latter block is inserted into the appropriate free-list.

3.4.2.3 Garbage Collection

If allocation proceeded for some time, garbage collection becomes necessary
to reclaim storage. In principle, it suffices to call the collector whenever the
allocator fails to find a sufficiently large free block. The obvious problem is
that the unexpected execution of the collector may cause unexpected

20

discontinuities in the behavior of an executing program. Hence, a different
strategy for calling the collector may be sought. A simple one, also used in the
Oberon system, periodically calls the collector when the system is idle. As the
system's typical operating mode is the execution of a series of atomic
commands issued by the user, a simple heuristic is to count the number of
executed commands and call the collector after every n-th execution.

The Oberon system relies on this strategy, i.e. whenever memory is requested it is either
allocated or the current command is aborted, but the collector is never run except for
the periodic calls during idle times, By the nature of most Oberon commands, this
strategy works quite well in most cases. It has the advantage that between commands
the stack contains no heap references. Thus the Oberen collector has no need to
inspect the stack for active references. However, if a command produces lots of
temporary heap structures, the Oberon heuristics is overly restrictive. For example, a
Lisp interpreter [Gri91] for the Oberon system uses a recursive evaluation model
[WH811, where many heap structures quickly turn into garbage. Due to the collection
strategy, the Lisp interpreter runs out of memory far earlier than necessary.

A refined strategy sticks to the periodic collection principle, but additionally
calls the collector whenever the allocator fails. This is done in Ethos and has
been done for several ported versions of Oberon; first for SPARC-Oberon
[Tem91]. A discussion of possible garbage collection strategies may be found
in [Coh81]; for Oberon in particular cf. [PHT91] and [WG92].

A completely asynchronous garbage collector [DLMx78] was rejected for the known
inefficiency of the original approach. An investigation of the current literature (e.g.
[SS91]) suggests that sufficiently efficient asynchronous collectors depend on memory
management hardware to detect asynchronous mutator activities. However, it was felt
that Ethos should not rely on having memory management hardware.

Like Oberon, Ethos uses a mark and sweep collector [McC60] based on a
recursive descent algorithm using an in-place threaded stack [SWe67]. All
objects allocated on the heap have a type tag, i.e. a pointer at a fixed place
referring to a type descriptor, cf. Figure 3.6. The information in the type
descriptor is used by various parts of the system. For garbage collection
purposes it is only relevant to know that a descriptor contains the size of an
object and the offsets of pointers contained in an object. Again following
[PHT91], this pointer offset table is laid out as shown below. (For simplicity,
word sizes and address widths of 4 bytes are assumed.)

N

object descriptor
-4l T
0 0 | size 32
: _pointer ; y table of

pointer

12 d+4 16| ¢ ‘ofets
16 | pointer d+8| -d-8 d>0)
20
24

Figure 3.6 — Object and Decriptor Layout.

The Mark procedure uses the tag of an object to remember which descendant
of that object has been visited last. To do so, the tag is set to offset d (the
beginning of the pointer offset table) when first reaching an unmarked object.
Then, after visiting a descendant, the tag is incremented to point to the next
entry in the pointer offset table. When a negative value is found in the offset
table, it is used to reset the tag and leave the object, The Mark procedure is
sketched below.

Objects carry a mark field with values out of {white, black}, where a black
object is marked. (Further "colors” will be introduced below.) The auxiliary
function Offset(p.tag) = Meml[p.tagl returns the pointer offset of the
descendant of p currently referred to by p.tag.

MarkFrom (p: Pointer)

92

[ifp=NILvp.mark =black - skip
fl p # NIL A p.mark =white - p.mark := black; p.tag := ptag + d; q = NIL;
do Offset(p.tag) = 0 - r := p[Offset(p.tag)];
ifr=NILvr.mark = black » p.tag :=ptag + 4
0 r # NIL A r.mark = white - r.mark := black;
plOffset(p.tag)l :=q; q:=p; p:=1;
p.tag:=ptag+d
fi
[Offset(p.tag) < 0 Aq + NIL - p.tag := p.tag + Offset(p.tag);
r := g[Offset(q.tag)];
qlOffset(q.tag)l :==pip:=q;q:=r;
p.lag .= ptlag+4

od;
{Offset(p.tag) < 0}
p-tag := p.tag + Offset(p.tag)

fi
1

The main invariant of the MarkFrom loop is

p.tag = black A p.tag = ptagy + d + 4(k-1), k>0

= all objects reachable from p via descendants 0.k-1 are marked
p.tag = black A ptag = ptagy

= all objects reachable from p are marked

For a more formal invariant it would be necessary to formalize the notion of
"reachability via a descendant pointer’, i.e. to model the heap structure as a directed
graph.
To avoid special cases, the Ethos system has been organized such that a
single root pointer suffices to mark all objects in the heap. This includes
module blocks allocated by the module loader. Hence, the block containing
the global variables and code of a loaded module is tagged. Its type descriptor
lists the offsets of pointers contained in global variables of the module.

As mentioned above, Ethos supports collecting garbage when relevant
pointers on multiple stacks may exist. A possible solution are type descriptors
for activation records. Instead, a conservative marking approach [Bar88)
[BW88] is used: Every four-byte integer on the stack is taken as a potential
pointer candidate and checked for validity.

The validity checks are close to the ones described in [Tem91]. A 4-byte aligned 4-byte
integer is taken as a candidate if it points to an 8-byte aligned block in the heap, the
potential block is unmarked and has a 16-byte aligned tag value pointing into the heap.
Candidates passing these tests are inserted into a list (procedure AnchorCandidate).
The list is sorted and compared against the heap to drop remaining invalid pointer
candidates. All candidates that pass this final test are used as roots for block marking
{MarkAnchorClosure).

Taking stack traversal into account, the outer garbage collection routine is:

N: INT; anchor: ARRAY MaxAnchors OF Pointer;

MarkAnchorClosure
p, q: Pointer; it INT;

[i:=0; p:=anchor{0]; q := HeapOrg;
doi<Naq<Heaplimit-
ifp<q-ii=i+1;p:=anchorli;

if FreeBlock(q) - skip [-FreeBlock(q) - MarkFrom(q) fi
%p> q - q:=q+size(q)

od
1

AnchorCandidate (p: Pointer)
[ifp MOD 8 # 0 v HeapOrg > p v p = HeapLimit - skip
(I p MOD 8 =0 A HeapOrg < p A p < Heaplimit -
if p.tag MOD 16 + O v HeapOrg > p.tag v p.tag = HeapLimit - skip
[l p.tag MOD 16 = 0 A HeapOrg < p.tag A p.tag < HeapLimit »
anchor[N]:=p; N:=N+1;
If N < MaxAnchors - skip
[N = MaxAnchors - Sort(anchor, N); MarkAnchorClosure
fi
fi
fi
1

TraceStack

sp: Address;

[N:=0;sp:=StackPointer;
do sp < StackOrg » AnchorCandidate(Mem[sp]); sp := sp + 4 od;
ifN=0-skip
It N > 0 - Sort(anchor, N); MarkAnchorClosure
fi
{(¥x : x € Stack A validPointer(x) : x.mark = black)}

1

Collect '
[MarkFrom(root); TraceStack; {reachable(x) =» x.mark = black} Sweep 1

93

94

MarkFrom is the procedure described above, and Sweep is a simple linear
scan over the whole heap, where adjacent free blocks are merged and entered
into the appropriate free-list. It has been described in [PHT91] and is not
repeated here. (The idea is to uniformly treat all blocks, including free blocks
and type descriptors, as blocks tagged with a descriptor containing the block
length. Initially all freelists are cleared. Then, sequences of unmarked blocks
are merged and resulting free blocks are inserted into the appropriate free-list.)

At a first glance it seems that the order in which free-lists are built is not significant. If
considering a steady state, i.e. one where the heap has been fragmented in a way that
allocation of small blocks happens across the heap, this is certainly correct. However, it
was found that as long as the periodic collection prevents heap saturation, a proper
strategy for building the free-lists can be employed to cause smaller blocks to cluster at
the beginning of the heap. Hence, a few, large blocks will exist at the end of the heap
area. This is important to decrease chances that a request for a large block will fail due
to heap fragmentation.

The used strategy is simple: Whenever rebuilding free-lists during the sweep phase,
each list is sorted in order of ascending addresses. A request for a small black that
cannot be satisfied by the corresponding free-list then leads to a splitting of the first
suitable block counted from the beginning of the heap. In fact, it was found that this
strategy is sufficiently effective to avoid heap compaction mechanisms, Oberon for IBM
RS/6000 uses this strategy to shrink the heap whenever the block at its end becomes
larger than a certain threshold, and on the other hand grows the heap whenever a
request for a block, after garbage collection, can still not be satisfied. This allows a
potentially large Oberon heap without permanently claiming too much memory.

3.4.2.4 Object Finalization

A problem not attacked in general by the Oberon garbage collector is that of
object finalization. As explained in 2.5.3, finalization is supported by Ethos in
tight conjunction with identity directory services.

The Qberon file system provides a procedure Old: Name-sFile to retrieve existing files by
name. The semantics are such that repetitive queries for the same file name retrieve the
same file (identical pointer value) as long as there is an existing reference to that file in
the system. As a result, the programmer may freely compare pointer values to check for
file identity. The file system itself also utilizes this property: A file is the instance of
caching, le. sector buffers are directly assigned to a file. Consistency among multiple
accesses is guaranteed just by means of the pointer identity property.

Internally, the Oberon file system uses a linked list of open files to check whether a
call to Old corresponds to a file that has already been opened. The only problem is:
When to release a file from that list? Since the system cannot rely on Close calls (other
pointers to the file may still be active), the only safe way is by means of garbage
collection. However, the collector will never remove a file, as it is always reachable via
the linked list of opened files! In Oberon this dilemma is solved by special treatment of
files, i.e. the collector is aware of the finked list in the file system, and treats it specially.

For Ethos, this decision was felt unacceptable. While Oberon intentionally made
low-level services like the file system unextensible, this is not so in Ethos. instead, a
solution was sought that would allow to add extensions in a safe way, such that the

85

extensions can provide a sewvice with semantics similar to that of the standard file
system. (Anecdote: The original Oberon solution was too specialized even for Oberon
itself. It had to be changed to also treat a list of fonts specially, as it was found that the
Fonts module should have a semantics similar to the Files module...)

The requirements of an identity directory/object finalization service are:

While a registered object is reachable, it should not be removed from
the identity directory used for registration,

+ An object registered for finalization is to be considered unreachable if
no reference besides the registration service exist (ie. if no "external’
references exist).

« When an object registered for finalization becomes unreachable it
should eventually become collected.

+ An object registered for finalization should be notified before being
collected (i.e. it should be "finalized").

+ During finalization an object should be able to perform any normal
action, including allocation of new objects and re-generation of
external references to itself. (This is important, as restrictions to what a
finalization code is allowed to do could not be checked efficiently.)

+ Whatever the object does during finalization (allocation of new
objects, re-establishment of reachability, or exceptional termination), it
should not be able to affect the collectors correctness.

+ The total cost imposed by supporting finalization should be a small
value proportional to the number of objects actually registered for
finalization. (The overhead should be negligible if finalization is not
used.)

The need for having finalization in a system has been stressed in the literature,
e.g. [RovB4][WDHB89][Atk89). Few truly safe implementations of object
finalization exist, though.

Finalizable objects in Ethos must be of a subtype of type Objects.FinObject.
For finalizable objects, the following protocol exists. The registration of
objects happens in so-called identity directories which in turn can be traversed
to enumerate the currently registered carriers.

DEFINITION Objects; .
PROCEDURE (F: FinObject) Finalize (VAR canceled: BOOLEAN);

PROCEDURE (H: HeapManager) Register (d: ldentityDir; c: FinObject);
PROCEDURE (H: HeapManager) First (d: IdentityDir): FinObject;
PROCEDURE (H: HeapManager) Next (f: FinObject): FinObject;

96

The key idea leading to safe finalization is to split notification and collection
of a finalizable object and to perform each at the end of a separate collection
period. Hence, if the notification causes the object to become reachable again,
the next time the collector checks the object, this will be discovered and the
object will not be collected. By extending the Collect procedure described
above, the algorithm looks as shown below.

While Objects supports the use of many identity directories, for the sake of
simplicity the following presentation assumes that there is only one, namely
D. Also, the shorthand notation doall fe D is used instead of an explicit linear
scan through the finalizable objects f registered in D. Each finalizable object
contains a state field with values out of {stable, cand, finalized}. A detailed
explanation of the algorithm follows the formal definition. The key problem is
to detect objects reachable from finalization candidates (done in
TentativelyMarkFrom). This is required to detect the situation where one
finalizable object x has a reference leading to another finalizable object y.
Then, it is unsafe to finalize y before x, as x could re-establish external
reachability of y.

D: IdentityDir;

TentativelyMarkFrom (p: Pointer)
q, r: Pointer;

I {p * NIL A p.mark = white}
p.mark = black; p.tag = p.tag + d; q := NIL;
do Offset(p.tag) =0 - r := p[Offset(p.tag)];
if r = NIL vr.mark = black - p.tag := p.tag + 4
0+ # NILAr.mark = red - r.mark := black; p.tag .= p.tag + 4
{ r # NIL A r.mark e {white, grey} - r.mark := black;
p[Offset(ptag)l :=qiq=pip:=r;
p.tag:=ptag+d
fi

[Offset(p.tag) < 0 Aq # NIL - p.tag := p.tag + Offset(p.tag); p.mark := grey;
r := q[Offset(q.tag)];
q[Offset(qtag)l ==pip=qgiq==1;
ptag:=ptag+4

{O’ffset(p.tag) <0}
p.tag .= p.tag + Offset(p.tag); p.mark := grey

MarkCandidates
f: FinObject;
[doallfeD-
if f.mark + white v {.state = finalized - skip
[f.mark = white A f.state + finalized - f.mark := red; f.state := cand
fi
od
{(¥feD: fmark =re

fst Reachable(f)) }

1
MarkDirClosure
f: FinObject; m: Mark;
[doallfeD -
if f.state # cand - skip
[f.state = cand » m := f.mark;

f.mark := white; TentativelyMarkFrom(f);
fmark:=m

i
HandleCandidates
f: FinObject;
[doalifeD-
if f.mark + red - f.state = stable
[f.mark = red »
if f.state # finalized - skip [f.state = finalized » D := D\ {f} fi
fi
od
{ (¥f € D: f.state = cand = SafelyFinalizable(f)) }
1

97

98

Finalize
f: FinObject; cancel: BOOL;
[doallfeD-
if f.state + cand - skip
[f.state = cand — f.state := finalized; cancel := FALSE;
f.Finalize(cancel);
if —cancel - skip [] cancel - f.state := stable fi
fi
od
]

Collect
I MarkFrom(root); TraceStack; { (¥x € heap: Reachable(x) = x.mark = black) }
MarkCandidates; MarkDirClosure; HandleCandidates;
Sweep; { (Vx € heap: x.mark = white) }
Finalize
1

Whenever the garbage collector detects that a registered object has no
external references, it calls the Finalize method of that object. If the object
re-establishes an extemal reference, or, more explicitly, cancels the finalization
by setting the canceled flag, the object is not collected. This must take care of
any object that itself became reachable just by the survival of the object, i.e.
objects that are reachable from the object. However, what does "no external
references” mean? The problem is that an object may have references to other
objects. Say the finalizable object x contains a pointer to the finalizable object
y and both are externally unreachable, i.e. finalization candidates. Let y get
finalized first. Then x gets finalized and as a side-effect let x re-establish
exteral reachability of y. Hence y has been finalized and yet is reachable
again, violating the semantics of finalization. Thus, only safely finalizable
objects are considerable for finalization. Such objects have no external
references (exterally unreachable) and are not reachable from any other
finalization candidate (internally unreachable).

To cope with these problems, finalizable objects have a state value
associated with them. For an object f the state is kept in fstate and takes
values from {stable, cand, finalize}. The live-time of a finalizable object may
then be characterized by its various state values:

f.state = stable = f /s not considered for finalization
fstate = cand = f is internally and externally unreachable, i.e. to be finalized
fstate = finalized = f has been finalized, i.e. is to be collected

29

The collector has been extended to use additional marking "colors’. Marking
values out of the set {white, grey, red, black} are used, where white and black
have the same meaning as before. The sweep phase treats grey and red values
like black ones. A finalizable object is marked red, if it is found to be externally
unreachable and therefore needs to be checked for reachability from another
finalization candidate. To check for such references, the special marking
procedure TentativelyMarkFrom is used. It works almost as MarkFrom
presented before, but upon recursive ascent it leaves objects marked grey
instead of black. Also, on recursive descent it marks objects black but treats
grey abjects like white ones. Whenever a red object is reached it is marked
black but not further traced. Therefore, TentativelyMarkFrom can be used to
check whether from any one object a path exists to a red object {(which in
turn becomes black).

Termination of TentativelyMarkFrom is guaranteed, as the current descent path is
marked black. Since the new marks added by TentativelyMarkFrom are grey, a second
execution of TentativelyMarkFrom starting at a different object can traverse paths that
the former call has traversed before.

Thus, by marking all finalization candidates red, calling TentativelyMarkFrom
for each of them, and then dropping all candidates that have tured black, the
safe candidate set is determined. The principles behind this algorithm have -
independently — been discovered before [AN88].

The p‘ossible transitions of state values are:

stable - cand : after marking took place, the object is still unmarked (white)
cand - stable : checking internal reachability caused marking of the object (black)
cand - finalized : Jjust before calling the finalization method

finalized - stable : finalization got canceled

finalized - stable : the next mark-phase after finalization detected reachability *)

*¥) occurs only if the finalized object itself misbehaved during finalization

Figure 3.7 illustrates the state transitions as they correlate with the various
procedures of the garbage collector. Actions happening in the nth collection
period are marked with "(n)", while those happening in the subsequent
collection period are marked "(n+1)".

100

allocated |4 NEW reclaimed
.
Register (n+1)
(n (n+1) Sweep
3 __Finalize / HandleCandidates
stable [§ finalized
\
(n) (n) (n)
MarkCandidates HandleCandidates Finalize
—» cand

Figure 3.7 - State Transitions during Object Finalization.

It is noteworthy that the Finalize procedure is called after the sweep-phase
took place. Therefore, an exceptionally terminating finalization method will
leave the system intact. The corresponding object will survive or be removed
depending on its reachability established before the finalization method
terminated. All other finalization candidates will be taken care of after the next
collection period.

Remark on references between finalizable objects: Generally, it is expected that
finalizable objects are not interrelated in a cyclic fashion. If cycles exist, such rings of
objects will never be finalized because there Is no possible safe way to do it. Also, even
acyclic references between finalizable objects are considered the exception. For a chain
of such objects, say A referring to B, B referring to ¢, etc., the collector has to finalize one
object at a time — starting with A ~ even if the whole chain is externally unreachable. in
the current Ethos implementation references between finalizable objects did not occur
atall,

3.4.2.5 Treatment of Subobjects

While object finalization is considered an important concept of the Ethos
system, in what follows a mechanism is described which allows to tune
system performance, but which is not considered a concept in its own tight.
As a motivation consider a font system that answers requests for certain fonts
by retuming font objects. Each font object in turn answers requests for certain
characters rastered for a specific device resolution. Typically, a font object
rasters all its characters when being created, or loads the rastered characters
from a file. It then maintains an array of character objects. Each character
object describes the metrics (bounding box and the like) of the corresponding
character and contains a pointer to a raster object. The raster object contains
the character's raster for a specific device. The following picture illustrates this.

101

font character raster
box
pat
65 " An i

Figure 3.8 — Font System using Separate Obfects for Fonts, Characters, and Raster Data.

A font is indexed In the range 0.255, but typically many characters are
undefined, i.e. mapped to a single "empty" character object. Still, a typical font
contains about 100 characters. As a result, for each rastered version of a font,
about 200 objects (character plus raster objects) are allocated. if one
considers some 10 fonts (different sizes of the same font family count
separately) used in a system and allows support for, say, two different
resolutions, then about 4000 objects are independently kept in the heap. This
has consequences for the garbage collector which has to mark and scan all
these objects each time it is invoked. However, all objects belonging to a font
will not be reclaimed until after the font itself becomes unreachable. An
object related that tightly to another object shall be called a subobject of the
latter (which itself is called the "parent-object” of the former). Hence, the
knowledge that character and raster objects are subobjects of a font object
could be used to enhance the collector's efficiency. Another point is that it is
often much more likely to have pointers to a parent-object than to any one of
its subobjects. In the case of font objects, references to character objects
(from outside of their font) tend to be short-lived.

With the upcoming Unicode fonts the index range grows to 0..65'535 to accomodate
all glyphs found in all the languages used worldwide. For font objects supporting
Unicode, the argumentation above gets even stronger, as the number of individual
subobjects per font may increase to something like 20000 objects. For the numbers
given above, one would have to expect some 400'000 objects!

A possibility would be automatic "aging” of such objects, as is done in
generational garbage collectors [Ung84]. In this case, all objects that
"survived” a collection period will be aged and henceforth collected at a
slower rate, e.g. only with every n-th collection cycle. This can be modified to
cover many generations collected at different speeds [UJ88]. However,
generational collectors do not make use of a particular subobject relationship
but rather "guess” the stability of an object by looking at its relative age. In the
font example, it is likely that a font persists for quite some time and migrates
into an old generation. Then it will take considerable time before the system

102

notices that the font became unreachable and could be collected.

For the Ethos collector a more straight-forward way has been chosen:
Subobjects are allocated within their parent-object. Hence, they are normally
not seen at all by the collector's mark and sweep phases. However, if a pointer
to a subobject is found during marking, it must be treated in a special way.
Instead of marking the subobject, which is not visible to the sweep phase, the
parent-object must be marked. Hence, the marking algorithm must be aware
of subobject pointers and treat them different from normal pointers. (Would
the pointer to the subobject simply be ignored, the collector might collect the
parent-object despite of its still reachable subobject. Hence, the subobject
teference would become a dangling pointer!) Figure 3.9 illustrates the
allocation principle.

font object

L wpr

[

B: embedded type descriptor
N shared by all character objects

[

embedded character object

\\ embedded raster object
embedded minimal type descriptor

of raster object

Figure 3.9 — Using Subobjects to Embed Character Objects into Font Objects.

The allocation of subobjects inside their parent objects is not directly supported by
Ethos services. Hence, a module implementing subobject relations needs to resort to
the unsafe language part, i.e. module SYSTEM. The correct allocation of subobjects is
thus a matter of correctness of a module implementing such a scheme. Correctly
allocated subaobjects are aligned in a certain way and have type descriptors that
themselves are subobjects of the same parent object. if subobjects are allocated
correctly, client modules need not know whether a pointer to an object is actually a
pointer to a subobject, as the collector treats pointers to subobjects in a special and safe
way.

How can normal pointers and subobject pointers be possibly distinguished?
The solution is to use an implicit flag. Normal objects in the heap are always
aligned: A normal pointer p has the property p MOD B = 0 (where B is the

103

allocation chunk size defined in 3.4.2.2). Hence, if subobjects are allocated in
a way that this property is guaranteed not to hold, subobject pointers are
easily detectable. For example, by aligning subobjects such that a subobject
pointer g has the property ¢ MOD B = 2k bit k of a pointer value directly
distinguishes subobject from naormal pointers.

To show how the mark phase can cope with subobjects, the modified
MarkFrom is listed below with the changes set in italic typeface.
TentativelyMarkFrom is modified analogously. It should be noted that
subobjects have proper tags and usually need a valid type descriptor. (For
example, a character object might be inspected using a type test.) This type
descriptor is simply another subobject allocated in the same parent-object. To
avoid overly complex effects on the marking algorithm, the restriction has
been introduced that a parent-object must be a leaf, i.e. contain no pointers
other than to its subobjects. This is a transitive property, thus subobjects may
not contain pointers other than to subobjects in the same parent-object. With
these restrictions holding, the marking algorithm merely has to check for the
subobject pointer property, and if it holds, has to mark the parent-object
instead of marking the referenced object. However, it need not traverse
potential descendants of that parent-object.

The leaf restriction could be removed at the price of a more complex marking
algorithm. Also, in the current implementation this restriction is by convention, i.e.
should be respected by allocators of subobjects. Like other subobject allocation criteria
itis not checked.)

MarkFrom (p: Pointer)
g, t: Pointer;
I 1fp=NiLvp.mark=black - skip
0 p + NIL nsubobj(p) - p.tag.tag.mark := black
I p + NIL A ~subobj(p) A p.mark = white > p.mark := black;
p.tag = p.tag + d; g := Nil;
do Offset(p.tag) = 0 - r = p[Offset(p.tag)];
if r = NiL v r.mark = black - p.tag :== p.tag + 4
[r # NIL Asubobj(r) - r.tag.tag mark = black; p.tag == p.tag + 4
0 r + NIL A —subcbf(r) Ar.mark = white - r.mark := black;
plOffset(p.tag)l :==q; q:=p;p:=r;
plag:=ptiag+d
fi

[l Offset(p.tag) < 0 Aq # NIL - p.tag := tag + Offset(tag);
r = q[Offset(q.tag)];

qlOffset(q.tag)l :=p; pi=q;q:=r;

ptag:=plag+4

od;
{Offset(p.tag) < 0}
p.tag := p.tag + Offset(p.tag)

104

3.4.2.6 Coding of Finalization and Subobject Attributes

The sections above introduced several attributes attached to every object (in
form of a tag), and in some cases even to every pointer (in the form of certain
bits with special meaning). In this section it is shown how these attributes are
coded in Ethos.

A tag needs to contain the following information:
outside mark phase:
« address of type descriptor (used for type tests and method lookup!)
during mark phase:

+ address of type descriptor, or of next descendant offset in type
descriptor

+ marking value € {white, red, grey, black}

Every pointer (including tags outside the mark phase, cf. remark below) needs
to contain the following information:

+ pointer refers to a normal object or to a subobject

Tags are encoded into a 4-byte word (Figure 3.10). Other pointers just have
the subobj bit (at the same position as tags).

At a first glance it seems unnecessary to have the subobj bit in tags. However, as will be
explained in Section 3.4.3, normal pointers to type descriptors may exist. Since type
descriptors are allocated in the heap, such pointers are followed by the mark phase.
Hence, a tag is just a specially placed pointer pointing to an otherwise normal object in
the heap. Indeed, type descriptors themselves have tags pointing to a minimal
descriptor appended to the end of the descriptor. This appended descriptor has a tag
pointing to itself.

31 _ 0

subobj
Figure 3.10 - Flag Bit Encoding in Tags.

The subobj bit is part of the actual address (due to proper alighment). Bits
black, grey, and red are cleared during the sweep phase. Hence, outside of the
mark phase the tag contains a proper type descriptor address. A slight
problem arises during the mark phase. Since the tag is used to step through
the pointer offset table within a type descriptor its value changes in

105

increments of the size a single offset value takes. In the extreme case, as for
the Ceres implementation, the offsets are stored as 2-byte integers. This
implies that the grey, red, and subobj bits are meaningless while the
descendants of an object are traversed. Luckily, this is acceptable: The
MarkFrom procedure does not inspect these bits if the black bit is set, which
is done before traversing an objects descendants.

Josef Templ [PHT91] has proposed to add another bit to tags, called the array
bit. The idea is to support iterative traversal of arrays in the heap. This
proposal may be combined with the coding explained above. (In fact, this
combination has been done in the ported version of Ethos, cf. 3.6.) Since this
array bit is required even while traversing descendants, it is important to
assign it to bit one and to increase the size of offset entries in the type
descriptors to 4-byte integers. The subobj bit should not be moved to a higher
bit as this has direct consequences for the alignment of subobjects and the
resulting internal fragmentation of parent-objects. Hence, the following coding
is proposed, where the sweep phase clears the black, grey, and red bits:

31 0

t black
array

— 8y

subobj
red

Figure 3.11 — Flag Bit Encoding in Tags, Supporting Arrays of Arbitrary Size.

343 Module Loader and Meta-Programming

The module loader is a central component of the system: Following Section
252 it is crucial for runtime extensibility. The Ethos standard loader is
provided by module Modules. For several reasons the Ethos loader has been
constructed differently than the one found in the Oberon system [WG92],
This section briefly introduces the loader function and otherwise concentrates
on the essential technical differences.

The main function of the loader is to take a module name, check whether the
module is already loaded, and if not, load it into the running system. As a
module may in turn import other modules that have not yet been loaded, it
seems quite natural to formulate the loader recursively. This is indeed the
approach taken for the Oberon loader.

After loading, the modules have to be initialized in a proper sequence, i.e.

106

no module should be initialized before all imported modules have been
initialized, and every module should be initialized eventually. For cyclic
imports this is obviously impossible; cyclic module imports are therefore
forbidden. This is checked and the loader refuses to load module groups
comntaining cycles.

Surprisingly, just the final step of module initialization is the most
interesting one. In order to initialize a module, the loader has to pass control
to the body of the newly loaded module. If the body code performs some
plain variable initializations and otherwise returns properly, no problem
occurs. However, a module body cannot be trusted as it may perform arbitrary
computations. Following the general Ethos principle of maintaining system
invariants even in the presence of certain errors, it was felt unacceptable that
abnormal body behavior may lead to global inconsistencies of the system.

This is just what happens in the case of the recursive Oberon loader. If the
body of a module M terminates exceptionally, the loaded module will remain
in the system, although only partially initialized. Even worse, modules loaded
before and importing M will also remain in the system, completely
uninitialized. To complete the disaster, it is possible that one of these
modules not only imports M but also, say, N. Then N may not even be loaded
at the time the exception happens. The principle problem is that exceptional
termination violates the stack principle and leaves the recursive loader in a
dangerous situation. To recover from such a situation would require adding a
complicated exception handling mechanism. (Note that the Ethos exception
handling mechanism would not suffice: The state information required to
recover is contained in the stacked activation records and thus lost after the
trap!)

3.4.3.1 A Non-Recursive Module Loader

To avoid all the problems mentioned above, the Ethos loader has been
designed in a non-recursive fashion, following an idea of Beat Heeb [Hee88]. It
has been refined to gracefully recover from exceptions.

The basic idea is not to use the stack to maintain relevant loader state
information. Instead, the loader maintains three global sets of modules: the
load-, the fnit-, and the ready-set. A newly encountered module is put into the
load-set. Modules in the load-set are loaded one after another and moved to
the initset. Finally, modules from the initset are initialized and moved to the
ready-set. Figure 3.12 explains how the sets are kept in two rings of module
descriptors, where the first ring represents the ready-set, and the second ring
represents the remaining sets. (This particular structure has been chosen to
ease the implementation of the required set operations.) A module descriptor
contains the name of the module plus a few pointers into the corresponding

107

module block. This is illustrated in Figure 3.13. A module block cannot be
allocated before knowing the precise space requirements, i.e. before reading
the corresponding object file. The separate module descriptors allow to
maintain information about modules not yet loaded.

The following explanations are based on the Ceres version of Ethos. Following a
restriction of the used NS32xxx processor, the Ceres architecture does not allow
module descriptors to be allocated freely. Instead, all module descriptors must reside
within the first 64K of memory. Hence, they are managed separately from the normal
heap using a fourth set — the freeset — of module descriptors. Whenever a fresh
module descriptor is needed, it is taken from the free-set. (If the free-set would become
empty, loading fails.)

ready-set free-—set init-set load-set
installed modules free descriptors init candidates load candidates
invariant empty iff empty iff empty iff
mods next=m free = |oad.next |mt free Ioad init
mods next mods ' m/t load

o fecdo cdood

Figure 3.12 — Structure of the Module Sets,

module module
descriptor block
name entries offsets of procedure entries
BB . fommands "™~ names and offsets of commands
CB imports "I~~~ pointers to descriptors of imports
1B | links ™~ addresses of external procedures
\L/?a J variables ™ global variables
P constants T constants
F— — (strings, pointers to type descs)
code
RB —+—
. I~ part of the symbol table
reference info (used to dump stack and variables)

Figure 3.13 — Module Descriptors and Module Blocks.

The loader is implemented by procedure ThisModule which is goal-driven,
where the goals are defined by the module sets. Figure 3.14 illustrates the
transitions of a module from one set to another. The loader does not try to
initialize any module until after the transitive closure of all imported modules

108

is in the initset. This property is used when resetting the loader after a failure
(cf. below). Figure 315 gives an example how a particular set of modules is
loaded.

exceptional termination

v | | |

free-set > load-set > init-set > ready-set
request for object file module body
unavailable module found and read in executed

Figure 3.14 - Transitions between the Module Sets.

[8 | [C] foadset |A[BC|CD
inft-set A |AB |ABCD[ABC| A
D ready-set D |DBC|ABCD

Figure 3.15 — Example of Loading a Set of Modules - Starting with A, Importing B, C, and D.
The loader algorithm is sketched below.

mads, free, init, load: Module;

res: INTEGER;
SearchinList (beg, end: Module; name: Name) returns (m: Madule);
[m:=beg;
do m + end A m.name # hame - m := m.next od
1

Clear (m: Module);
[m.name :="~" (xreset other module fieldsx) 1
ResetloadGoals (from: Module)
m: Module;
[m:=mods.next;
do m # mods A m # from - m := m.next od;
if m # from - skip I m = from - from := free fi
m := from;
dom # load - m := m.next; Clear(m) od;
init .= from; load := from
1
ResetGoals
[ResetloadGoals(free) 1

109

LocateModule (name: Name) returns (m: Module)

I

1

m := SearchInList{mods.next, mods, name);
{m.name = name v m ¢ ready-set}
if m.name = name v free = init - skip
[m.name # name A free # init = m := SearchinList(free.next, init, name)
fi;
{m.name = name v m ¢ ready-set u init-set}
if m.name = name v init = load - skip
0 m.name # name A init + load - m := SearchinList(init.next, load, name)
fi;
{m.name = name v m ¢ ready-set u init-set u load-set}
if m.name = name -» skip
[l m.name # name A load.next = free > m := NIL; res := "out of memory"
I m.name # name A load.next + free - load = load.next;
= |oad; m.name ;= name {m.name = name A m € load-set}
fi
{m = NILv (m.name = name A m ¢ ready-set v init-set u load-set}

LoadModule (m: Module; f: File)
(% create new module block, load module from file f, use LocateModule to spot imports

(this may cause imports to be entered into the load-set), if error detected set res)

LoadNextModule
m: Module; f: File;

I

.

m := init.next; f := ObjFileOf(m.name);

if ValidObjFile(f) A KeyMatch(m, f) - LoadModule(m, f)
[~ValidObjFile(f) - res := "invalid object file"

[~KeyMatch(m,) - res := "key mismatch"

fi;

if res # 0 = skip [res = 0 - init := init.next fi

LinkModule {(m: Module)

(% use entry lists of imported modules to link m %)
LinkLowestModule

p, m: Module;

[{load =init Ares =0}

p = free; m = p.next;
do p # init A ~lmportsinitialized(m) - p := m; m := m.next od;
if p = init - res :="gyclic import’
[l p +init - p.next := m.next;
m.next ;= mods.next; mods.next := m; mods := m;
LinkModule(m);
Devices.PushEP(ResetGoals);
m.body; res = 0;
Devices.PopEP(ResetGoals)

110

ThisModule (hame: Name) returns (m: Module)
top: Module;
[res:=0;top:=init;
m := LocateModule(name);
do (load # init v init # free) Ares=0 -
if load # init » LoadNextModule
[load = init - {init # free} LinkLowestModule
fi;
if res = 0 - skip [res # 0 - ResetLoadGoals(top) fi
od;
if res = 0 - skip [res # 0 > m := NIL fi
1

To understand the special behavior of the non-recursive loader as opposed to
its recursive counterpart, the special routines ResetLoadGoals and ResetGoals
need be studied in more detail. To begin with, one might consider the cases
where no exceptional terminations of module bodies are involved. In this case
there are two calls to ResetlLoadGoals, both in ThisModule. ResetloadGoals is
invoked if the loading of a module m failed. In this case all pending modules
of the current ThisModule invocation need be removed. Here, the stack fashion
of the recursive loader is simulated by stacking the value top, indicating which
module was prepared for processing before calling ThisModule. However, why
is top required at all, ie. why isn't it sufficient to call ResetGoals when
detecting a load error? (Before continuing, the reader may pause and try to
find out!)

" One has to consider the case where the body of a module just being
initialized recursively invokes the loader. In this case, the loader may fail to
load the requested modules. However, the loader should not disturb the state
it was in before being invoked recursively. This is just done by resetting only
up to top. An important example is a module that uses the loader to install an
optional feature. If the feature is not present, the loader clearly should proceed
without throwing away the module that checked for the option.

The procedure ResetLoadGoals has to check whether top still points to a module in the
initset. \f not, all modules in the init- and Joad-sets have to be removed, as the original
module pointed to by top has moved to the ready-set before the error occured.

A similarly tricky condition is present in the calling sequence invoking a
module’s body (procedure LinkLowestModule). Here, after calling the module
body, the global result state res of the loader is reset. Why? Again, if the body
performed a recursive invocation - causing the result state to become
non-zero — this result is not relevant for the ongoing initialization operations
and should not lead to an abortion of it.

Next, one might look at the call to ResetloadGoals after calling
LinkLowestModule. There is only one condition that causes the invocation of
ResetLoadGoals at this point: The presence of cyclic imports among the

111

modules to be initialized. Since the loader does not allow cyclic imports, all
involved modules are thrown away.

Finally, when the body of a module traps, i.e. terminates exceptionally,
ResetGoals is called as an exception handler. In tum all modules currently
under preparation are dropped and the loader is reset to a stable state, i.e. one
involving only correctly loaded and initialized modules.

The module that trapped remains in the ready-set, as it may already be referenced by
another module that has been loaded and initialized due to a recursive loader
invocation. An exceptional termination of a module body is considered to be a
programming erfor in that module leading to a potentially inconsistent module
initialization. Since this is also possible for other programming errors leading to normal
termination, leaving the madule in the ready-set is a consistent policy.

Why it is at all a good idea to move a module to the ready-set before its
initialization has been completed? Again, this is a rather subtle point, and
again, it involves recursive loader invocation from within a module's body.
Consider the case where the body of a module, say M, is invoked while M is
left in the initset. Then, as soon as the loader is invoked from within the body,
the loader will follow its goal-driven strategy until the load-set is empty. Then it
will look for a module in the init-set that is ready for initialization, and will find
module M! Thus the loader will again call the body of M.

When moving the module to the ready-set first, the loader instead proceeds
to initialize the next higher modules and retums when it is done with that. In
turn, the body of module M continues. This is the best a loader can
guarantee: [f a module body invokes the loader recursively, it is not possible at
the same time to continue the execution of the body immediately and to
return the recursively requested module in a properly initialized state.

By now, one might argue that the price paid for the loader's robustness is too
high. Indeed, the recursive Oberon loader is simpler. However, the havoc
situations that it may establish in the system are found clearly unacceptable.
Monitoring the work of less experienced programmers (students) revealed
that such situations do occur and that they are rather hard to diagnose.
(Usually, the ubiquitous reaction is to reboot the system - just to be sure ...)

It can be claimed that a recursive loader could cope with these problems by
establishing global state and using marking techniques similar to the ones presented
above. Indeed, this is deemed possible. (The MacOberon loader, for example, uses this
approach to deal with some of the mentioned problems.) However, combining
recursion and global state negates most of the elegance of the recursive solution: If all
problems are to be solved, the recursion state cannot be used to determine what to do
next, and the global state needs to be inspected anyway. (It is interesting to see that the
recursive Oberon loaders implemented for the various system ports behave very
differently when being confronted with such problematic scenarios.)

Another objection might be that most of the tricky problems could be circumvented
by not allowing a module bady to recursively invoke the madule loader. (The problem

112

of exceptional termination of module bodies remains.) This, however, is far too
restrictive. For example, even the standard Oberon system uses two such loader
invocations during its bootstrap process! (The first one to load module Oberon after
initializing module Modules; the second one to load module System after initializing
module Oberon.)

3.4.3.2 Module Unloading

The inverse operation of module loading is module unloading. During normal
operation of the Ethos system, modules are never unloaded. However, when
programming new modules it is necessary to replace old module versions by
new ones.

The rational for never automatically unloading a module once it has been loaded is
twofold. On the one hand a module represents state anchored in its global variables. It
is never known whether the user later wants to use the stored data, or not. On the
other hand, the main argument for automatic unloading would be storage
presetvation. This argument is of no practical significance since typical Oberon(-2)
modules are rather small, and the system loads each module at most once.

At first glance, module unloading is trivial: The list of loaded modules is
searched for a named module and, if found, it is removed from that list. The
matter gets more complicated when looking at the many interrelations in the
running system a module may be involved in. Firstly, a module may have
clients, ie. modules importing it. Secondly, a module provides entities
referenceable from anywhere in the system. These are type descriptors of types
defined by the module, and externally referenceable procedures.

The client problem can be solved easily by maintaining a reference count in
every module. The count indicates how many client modules currently exist
that import the module at hand. If a module's reference count does not equal
zero, the unloading of this module is prevented.

Far harder is the second problem. The type extension scheme permits a
variable of a base type to refer to an object of an extended type. Hence, it is
possible that a variable defined in a lower-level module refers to an object of a
type defined by the module to be removed. Likewise, method descriptors and
procedure variables reachable from a lower module may refer to procedures or
methods defined in a higher module. For mere type descriptor references, the
problem is solved easily by allocating type descriptors in the heap. Thus, when
unloading a module, the type descriptors it defined remain valid and are
eventually collected when the last object of these types disappears.

In principle, there are several alternative solutions to cope with the problem of
procedural references. Firstly, it is possible to prevent unloading of modules
with pending procedural references. Secondly, one may release a module from
the module list upon a request for unloading, but keep the whole module in
the heap until after the last procedural reference is gone. (This is done in a

113

newer version of Sparc-Oberon.) Thirdly, all procedural references to a module
about to be released may be invalidated. (This is done in the Ceres-1/2
versions of Oberon and, to some extent, in the Ceres-3 version of Ethos, cf.
inset below.) Fourthly, the problem may be ignored, i.e. the system may be left
in an unsafe state where invocation of an unloaded module is possible. (This
is done in the Ceres-3 version of Oberon.)

The first approach tends to make it hard to unload a module, as the user
has to know (and eliminate) all existing procedural references. The second
approach may be understood as a kind of "renaming’ of a loaded module. Its
effect is very similar to the (theoretical) method of renaming the new version
of a module and just leaving the old version as it is. Removing the unloaded
module from the module list allows its removal by the garbage collector as
soon as no references exist any more. The third approach also has its
problems: It may lead to system failure if some installed extension gets
partially malfunctioning by invalidating some of its procedural references.
Finally, the fourth approach is undesirable, as it leaves the system in an
unpredictable state.

The Ethos version for Ceres-3 uses heuristics close to the third approach. The heuristics
are build into procedure Clear (3.4.3.1) called within FreeThis (below). Clear resets a
module descriptor before returning it to the freeset. in case of the Ceres3
implementation, all external procedural references take an indirection via the program
base PB contained in the module descriptor, Clear sets the program base to point to a
special area filled with Break instructions. As long as the module descriptor is not
reused for a new module, this heuristics prevents dangling procedural references to be
invoked unnoticedly. To avoid early re-use of the procedure descriptor, released
modules are added to the end of the list representing the free-set, while newly assigned
module descriptors are taken from the beginning of that list.

Often it is necessary to unload more than one module, e.g. when replacing a
complete subsystem. Since all modules are members of a directed acyclic
graph, automation of unloading typical subgraphs supports common
replacement tasks. Figure 3.16 illustrates two typical cases of unloading
subgraphs. If module A is imported by module B, then A is called a host
module of B, and B is called a client module of A. Directed edges in the import
graph go from host to client modules, e.g. from A to 8.

114

Figure 3.16 - Module Unloading. Left: Incl. Host Modules — Right: incl. Client Modules.

In both graphs the modules to be unloaded are shaded. In the example on
the lefthand side, a toplevel module (darkly shaded) and all of its
independent host modules are unloaded. Here, a host module is called
independent, if it has no other client modules. In the example on the
right-hand side a bottom-level module (darkly shaded) and all of its clients are
unloaded.

The first method (host unloading) is most useful for conventional module
stacks, where a single top module exists. For example, the whole compiler
may be unloaded by unloading its top module and all of its independent
hosts. The second method tends to unload rather large parts of the system if
applied to a commonly used module. The idea is to apply it to a new base
module defining some new abstract type. Then all the clients and all derived
extensions will be unloaded. For example, one might work on an extensible
graphics editor in which case unloading of the foundation module, say
Graphics, causes unloading of the entire graphics subsystem. While the first
method is available also in the Oberon system, the second has been added in
consideration of the typically inverted structure of extensible systems, where
no single top module exists.

Both unloading strategies are implemented rather easily in a recursive fashion.
As can be seen from procedure FreeModule, any combination of single
module unloading and the two closure methods is supported.

FreeThis (m: Module)

I p:=mods;
do p.next = m - p := p.next od;
Clear{(m); p.next := m.next;
m.next := free.next; free.next .= m;
if mods # m - skip | mods = m - mods = p fi;
if init + free - skip [l init = free - init .= m fi;
if load + free -» skip I load = free - load := m fi;
free :=m
{m € free-set}

1

FreeClients (m: Module)
m1, m2: Module;

115

[if m.refcnt=0 - skip
I m.refent # 0 - { (Ym1: m1 € ready-set : m1 imports m = m1 & {m.next .. mods}) }
m1 = m.hext;
do m1 + mods.next » m2 := m1.imports;
do m2 # NIL Am2 # m -» m2 := m2.nextimp od;
ifm2 #m - m1 :=m1.next
i m2 =m - {m1 imports m} m2 := m1.imports;
do m2 # NIL » m2.refent := m2.refent — 1; m2 := m2.nextimp od;
FreeClients(m1);
m2 = m1; m1 := mt.next; FreeThis(m?2)
fi
od
fi
1

Free (m: Module; hosts: BOOL)
m1: Module;
[If m.refent + 0 - res == "unfoading failed”
1 m.refent = 0 - md = m.imports;
dom1 ¢ NIL - m1.refent .= m .refent - 1;
if <hosts v m1.refcnt + 0 - skip
0 hosts A m1.refcnt = 0 - Free(m1, hosts)

fi;

m1 = m7.nextimp
od;
FreeThis(m)

1

FreeModule (name: Name; this, clients, hosts; BOOL)
(x free this (named) module, free its clients, free its hosts)
m: Module;
I m = LocateModule(name);
If m = NIL - res := "not loaded"
Im#NIL->res:=0;
if ~«clients - skip [clients - FreeClients(m) fi;
if ~this A <hosts - skip [this v hosts - Free(m, hosts) fi
fi

3.4.3.3 Meta-Programming and Reflection Facilities
for Modules, Commands, Types, and Objects.

An important aspect of an extensible system is the capability to reflect on its
own state. Examples are services that support listing all modules currently
loaded, that invoke commands by name, or that support generic type-driven
externalization and internalization of arbitrary objects. In all these cases it is
necessary to somehow access information about the currently established

116

system. Such information is called meta-information, and the use of it is called
meta-programming. If a program operates on the basis of its own
meta-information, this is called reflection.

Meta-programming in the Oberon system is provided for accessing module
and commands by name. It is not available for types and objects. Also, the
attributes of a loaded module are only accessible via low-level use of untyped
information. (Oberon module descriptors export a bundle of addresses
pointing to various sections of a module block. The information they point at
is only accessible using module SYSTEM and is only interpretable by following
machine-dependent conventions.) The Ethos module Modules generalizes
these meta-programming capabilities and in tumn allows to extend services
using these features without the need for unsafe programming.

DEFINITION Modules;
CONST
insert = 0; delete =1; (xdirectory notification codesx)
temp = 0; unloaded =1; (xmodule states¥)

TYPE
Command = PROCEDURE;

Type = POINTER TO TypeDesc; (xTypeDesc intentionally not exportedx)

Module = POINTER TO ModuleDesg;
ModuleDesc = RECORD
PROCEDURE (M: Module) Info (): ModInfo;

PROCEDURE (M: Module) GetName (VAR name: ARRAY OF CHAR);
PROCEDURE (M: Module) GetCommands (): Cmdinfo;
PROCEDURE (M: Module) Getimports (): Implinfo;

PROCEDURE (M: Madule) GetTypes (): Typinfo;

PROCEDURE (M: Module) ThisCommand (name: ARRAY OF CHAR): Command;
PROCEDURE (M: Module) ThisType {name: ARRAY OF CHAR): Type;
END;

Name = ARRAY 32 OF CHAR,;

117

Modinfo = POINTER TO ModinfoDesc;
ModInfoDesc = RECORD (Objects.ObjectDesc)
next: Modinfo; mod: Module;
state: SET; (%temp, unloadedx)
BB, CB, 1B, LB, VB, SB, PB, RB: LONGINT; (xmachine dependentx)
size, key, refcnt: LONGINT;
name: Name
END;

CmdInfo = POINTER TO CmdinfoDesc;
CmdinfoDesc = RECORD (Objects.ObjectDesc)

next: Cmdlnfo; cmd: Command; name: Name
END;

Impinfo = POINTER TO ImpinfoDesc;
ImplnfoDesc = RECORD (Objects.ObjectDesc)

next: Implinfo; mod: Module; name: Name
END;

Typinfo = POINTER TO TypinfoDesc;
TypinfoDesc = RECORD (Objects.ObjectDesc)
next: Typlnfo; type: Type; name: Name
END;

DirNotifyMsg = RECORD (Objects.NotifyMsg)
dir: Directory; op: INTEGER; mod: Module; name: Name
END;

Directory = POINTER TO DirectoryDesc;
DirectoryDesc = RECORD (Objects.ObjectDesc)
ref: Files.Directory;
notify: BOOLEAN; (xiftrue, directory change notifications are broadcastedx)
res: INTEGER; cand: Name; (xcand: name of the offending module causing resx)

PROCEDURE (D: Directory) FreeModule
(name: ARRAY OF CHAR; this, clients, hosts: BOOLEAN);
PROCEDURE (D: Directory) GetDir
(prefix: ARRAY OF CHAR; this: BOOLEAN): Modinfo;
PROCEDURE (D: Directory) ThisModule (name: ARRAY OF CHAR): Module;
END;

VAR
dir, stdDir-: Directory;

The module loader is encapsulated into a so-called module directory. As can
be seen from the interface excerpt above, it is possible to install a different
loader by changing the value of variable dir. (As always, the standard loader is
still accessible via the read-only variable stdDir) As the module loader
contains the definition of object file formats, different formats may be

118

supported by installing loader extensions. Module directories provide error
state information corresponding to the last lookup, a reference to the file
directory to be used when seeking currently unloaded modules, and a flag
indicating whether the directory should notify about changes (cf. 3.4.8.4).

Modules are implemented as abstract objects, i.e. ho internals are directly
exported, Instead, a module has a set of methods that retum various
information about a module. For meta-programming purposes, the methods
GetCommands, Getimports, and GetTypes are of interest. These allow to
operate on the module hierarchy and the set of commands and types
provided by each of the modules. (The function procedures ThisCommand
and ThisType are provided for efficiency and convenience in the cases where a
single command or type with known name is looked for.)

As a matter of style, Ethos modules do not provide enumeration features for abstract
data structures. Instead, selective copy-out mechanisms are used that take a snapshot of
the structure and return a description in a separate linked list. This avoids the hazards
with iterators in imperative programming languages. In the example of Modules, the
entire module list, or any of the module-specific lists of imports, commands, or types
are copied out.

Further meta-programming capabilities are provided on the level of types and
objects. It is possible to retrieve the type of an object and it is possible to
create instances of a given type. Also, a type may be picked by name and the
name of a type may be extracted. Finally, it is possible to reflect on the type
hierarchy by examining the level of a type, and by retrieving the base types of
a type.

In principle, it would be possible to extend the type-level meta-information
to cover all information contained in the original type declaration. This would
require changing the compiler and the object file format such that the
required information is effectively passed from the compiler to the run-time
data structures (type and module descriptors, module blocks). Likewise, the
meta-information on the module-level could be extended. Such refined
capabilities are not required in the current Ethos system, but could be added
as extensions. However, their precise treatment is beyond the scope of the
project described in this thesis.

Since all record types defined anywhere in the system are in principle retrievable by
name, it is possible to create Instances of non-exported types. To allow some control
over this conceptual loop-hole, retrieval of types — by name or by object — that are not
derived from Objects.ObjectDesc is prevented.

119

The procedures providing meta-information on the type system are:

DEFINITION Modules; ...
PROCEDURE GCetTypeName (t: Type; VAR name: ARRAY OF CHAR);
PROCEDURE BaseOf (t: Type; lev: INTEGER): Type;
PROCEDURE LevelOf (t: Type): INTEGER;
PROCEDURE ModuleOf (t: Type): Module;

PROCEDURE TypeOf (obj: Objects.Object): Type;

PROCEDURE NewObj (VAR obj: SYSTEM.PTR; t: Type);
PROCEDURE GenObj (src: Objects.Object; VAR dest: SYSTEM.PTR);
PROCEDURE CopyObj (src: Objects.Object; VAR dest: SYSTEM.PTR);

For convenience, the procedures GenObj and CopyObj have been added. Both
implement commonly used combinations of other procedures presented
above and may be used to implement a more efficient shortcut. GenObj takes
the type of a source object and creates a new instance of that type. CopyObj
makes use of the fact that the thereby created object is derived from
Objects.ObjectDesc and calls the method CopyFrom to actually copy the data
from the source to the newly created destination object.

The power of the provided operators may be judged by looking at some
typical uses (where x and y are variables pointing to some objects, s, t, and u
are variables of type Type, and p is a Boolean):

p := SameType(x, y): p = TypeOf(x) = TypeOf(y)

p=xISt s 1= TypeOf(x); p := BaseOf(t, LevelOf(s)) = t
p = SubType(x, y): ti=TypeOf(y); p=x 1St

u := CommonBaseType(s, t): i := Min(LevelOf(s), LevelOf(t)); u := NIL;

doiz0Au+NIL->
if BaseOf(s, 1) # BaseOf(t,) s> i :=i1+1
[} BaseOf(s, i) = BaseOf(t,) » u := BaseOf(s, i)
fi

od

The rationale for placing all these features into moduie Modules is the relation
between a type and its defining modules. Hence, a module below Modules - e.g.
Objects - could not possibly provide these services. The introduction of a separate
higher, almost empty module for this purpose was felt pompous.

120

3.4.3.4 Further Design Decisions and Technical Remarks

When designing the Ethos module loader several smaller problems had to be .
attacked. This section covers some of the more interesting ones. However, the
material presented below is not essential for the understanding of the
underlying concepts.

Everything in the Heap. For Ethos the design decision was taken to allocate
everything either on the main stack or in the heap. (If additional stacks are
used to support, say, coroutines, these are allocated in the heap, too.) This
decision stands in contrast to those taken for many Oberon implementations
where module blocks and, in some cases, type descriptors are not allocated
within the heap but maintained in separate areas. On Ceres, this results in a
conflict between a growing heap and a growing module block area. The heap
may grow to its limits and then get fragmented by subsequent garbage
collections. In turn, it is no longer possible to load new modules, although, in
principle, sufficient space would be available. To cure this problem without
allocating modules in the heap requires a second-level scheme managing the
allocation and release of memory pages within the heap. Also, the separate
allocation strategy complicates the garbage collector: Pointers contained in
global variables of a module reside in the module area and are explicitly
traversed. In Ethos the unification of all allocation mechanisms made it easy
to use a single marking algorithm starting at a single, fixed root address.

Loading Packaged Module Sub-Trees: Libraries. For experimental purposes the
Ethos loader has been made up to support a second object file format. Files of
this format are called libraries and essentially consist of a directory plus a
series of standard object files. The idea is to allow packaging of complete,
closed sub-systems into a single file. For example, the Ethos compiler [Cre91]
consists of nine modules. However, only the top-level module has a
command and programming interface meant to be used by other modules
not part of the compiler. Also, it is somewhat error-prone to ensure that all
nine modules - that is, that all nine object files — are present and consistent.
Bundling all compiler modules into a single library file named after the
top-level module does the job quite nicely. Then, is it necessary to restrict the
mechanism to closed sub-systems? In fact, the restriction is a matter of
conventions. Since the loader takes a library apart and installs each module
individually, it is possible to package any set of modules into a library. The
problem occurs when trying to locate one of these modules before it got
loaded: For the top-level module its name can be used to find the library file,
but for other modules no simple mapping exists to determine which library
needs be searched. (A possible remedy is to nevertheless package such sets of

121

modules, and to preload the whole library as part of the startup
configuration.) ‘

Detecting Calls to Unloaded Modules: A Heuristics. As discussed above in the
section on unloading modules, problems occur when procedural references
(via procedure variables or method tables in type descriptors) to an unloaded
module remain. Several solutions to this problem have been discussed where
all the cleaner ones essentially prevented this situation from happening at all.
The Cetes version of Ethos is based on the standard object file format as
defined by the Ceres Oberon implementation. Thus, the Ceres version does
not have sufficient information at its hands to implement any of these
strategies. Instead, a heuristics has been implemented which catches
problems in most cases. Firstly, module descriptors are not immediately
reused after unloading a module. (They are eventually, as the pool of available
descriptors is limitted to a rather small amount by the Ceres hardware.)
Secondly, all external calls to procedures are implemented using an
indirection via the callee’s module descriptor. Thirdly, as long as not being
reused, a module descriptor of an unloaded module points to a special code
block statically provided by the loader. This code block is filled with Break
instructions. Changing the code base in the descriptor immediately effects all
existing procedural references to the corresponding module: If a procedural
reference is used to invoke a procedure (or method) implemented in an
unloaded module, an exception is risen.

Detail: The Break instruction is a single byte instruction with code 242. The byte
following this instruction is by convention understood as the break number. Hence
exception handling code can detect that the cause of the exception was a call to an
unloaded module.

Extensibility of Heap Manager and Module Loader. One might note that the
internal representations of objects, types, and modules are not exported. How
can a new heap manager or module loader be added then? The current
implementation relies on implicit module coupling (2.4.1) to achieve this: The
internal conventions (memory layout, invariants) used by the heap manager or
module loader need be maintained by the extensions. This is not as unsafe as
it seems since — without importing module SYSTEM - it is simply not possible
to implement a heap manager or module loader that does more than adding
filtering functions to the standard implementations. If, on the other hand, the
need comes up to experiment with, say, different object file formats, it is
possible to add a module loader (at run-time!) that first checks for a new
format, and falls back to the standard loader otherwise. If the new loader
detects an object file of the new format, it instead does the loading itself and
follows the conventions of the standard loader to install the module into the
module list.

122

Using implicit module coupling works, but tends to require
re-programming large portions of the extended service. Also, it has all the
problems of implicit module coupling (2.4.1). One way to improve the
situation is to refine the modules Objects and Modules into frameworks of
modules and types. Then, the new modules constituting the implementation
details of Objects and Modules would be considered private (i.e. are not
forced to provide system-wide safe interfaces). Thereby, the intemal details
could be provided in a structured and typeful manner, supporting extensions
on that level. This approach has been chosen in the Choices operating system
[C)M%89], which mimics fairlly conventional operating systems but has its
structures decomposed into object-oriented frameworks.

344 Preemption - Tasks, Coroutines, Threads, Processes

A rather old issue of operating system design is the support of pseud
execution. Originally, the goal was to design single-processor ij
systems simultaneously usable by many users (e.g. [Org72]). Each user should

have the illusion of possessing an individual, slower machine. The constrict
providing such a “virtual processor” is called process. Processes are completely
isolated from each other: A standard process - as in UNIX [Bac86] - carrigs it)sl ‘
own address space, its own stack, its own processor state, its own logical
device assignments, and so on. Two processes executing on the same
machine thus can impose nearly no side-effects on each other. (The exception
being shared files and perhaps other shared system resources.) This imposes
significant costs on process creation and process switching, also called
- context switching. '

~ Later, the use of quasi-parallel execution of a single program was found an
appropriate structuring tool (e.g. [Hoa841). By having multiple processes
collaborating for a single user or application the cost of individual processes
and that of process scheduling and context switching became much more
critical. Hence, the introduction of more ‘light-weight' quasi-parallel
constructs was sought. While all of them differ significantly in their actual
concurrency semantics, the common idea is to reduce the amount of context
associated with each process. By sharing a single address space, i.e. by sharing
global data, a more light-weight construct called thread (also called
light-weight process) results. Many modem operating systems support threads.
Often a set of threads executes in a shared address space, and the set of
threads together with the address space form a process (e.g. the Mach Kemel

[ABB%86)).

By removing the property of automatic context switching (preemption), and
thereby most of the thread-specific processor state, threads reduce to
coroutines [Wir841. A different alternative is to remove the stack and to stay
with preemption. This new construct is called engine to emphasize that it is
the driving part of a parallel state machine (see below). Finally, by removing all
state information (except for the existence of an almost empty task
descriptor), one arrives at (non-preemptive) tasks. Figure 3.17 illustrates the
relation between these different constructs.

O;Pa’rallkek ~,
me-sharing

The various possible combinations of constructs like Coroutines or Engines with
separate address spaces, or separate bindings to global resources have not been
considered meaningful, as the resulting weight does not justify removal of any of the
other, far more light-weight attributes.

124

| Process |
A

+ address space
+ global resources

+ preemption ‘ l+ stack
[Coroutine Engine]
+ stack ‘ k+ preemption
Task

Figure 3.17 — Relation Between Various Tasking Concepts.

The benefits of all constructs above are various levels of relaxation of the
sequential programming model. As long as preemption is avoided, i.e. as long
as context switches happen at points clearly controlled by the programmer,
few problems result. This is true for non-preemptive tasks and for coroutines.
The resulting style of programming is often called cooperative multi-tasking. It
is the dominating programming model in the Oberon system, but also in the
Macintosh OS [App85].

Further relaxation of the sequential model has its costs. Either one has to
pay for the high overhead of true processes providing the illusion of multiple,
mostly independent and sequential executions. Or one has to pay the price of
introducing problems of non-sequential execution, i.e. the danger of
uncontrolled side-effects resulting from arbitrarily interleaved execution. To
cure the effects of the latter, many secondary constructs have been proposed.
The two most important ones being Semaphores [Dij65] and Monitors
[Hoa74]. Recent developments focussed on encapsulating the problems of
thread communication and synchronization into so-called parallel
object-oriented languages (e.g. [Ame871). The basic concept is to allow some
kind of non-blocking message send. In its purest form this leads to actor
languages [AH87], a survey of various approaches may. be found in [KL89].
Often, the tendency is to uniformly treat the various multi-processor and
distribution architectures, where true parallelity exists and should be
exploited.

Decisions taken for Ethos. Ethos follows Oberon in being primarily designed to
execute on a single-user workstation. For Oberon, exploitation of parallelism
was not considered important. The Oberon system avoids preemption, i.e.
except for interrupt-handlers all code is executed strictly sequentially, and only
non-preemptive tasks are supported. Also, it is quite easy to add coroutines

125

usable while a command is executing. This has been used successfully to
write simple simulation software. The lack of allowing garbage collection
while stacks may contain valid pointers, and the impossibility to provide
coroutine stacks that are protected against overflows render the coroutine
packages less useful.

Experience with networking software [Szy90a] exhibited a weakness in the
non-preemptive design of Oberon. In particular, the requirement that a local
workstation be responsive to the network while at the same time executing
some time-consuming task caused difficulties. Currently, a project is underway
investigating the possibility of introducing threads to the Oberon system.

For Ethos, a far simpler approach was taken: Besides supporting
non-preemptive tasks as found in the Oberon system, Ethos adds preemptive
tasks (engines). An engine is particulady light-weight in that it does not require
its own stack: Engines preempt the main process and execute on its stack, but
engines never preempt other engines of same priority. (Currently, Ethos
supports only a single priority for all engines.) The idea is to isolate
time~critical activities and implement them using engines while staying with
the purely sequential programming model for the majority of the code. In a
sense, an engine can be considered to be an interrupt handler handling some
virtual interrupt. The engine scheduler guarantees invocation of all engines
staying in a ready state at a fixed frequency (if engines cooperate). Therefore,
engines can be used to implement activities bound by real-time constraints in
a simple way. The typical approach is to implement some kind of state
machine that uses an engine to perform transitions. For example, the Ethos
profiler uses an engine to monitor the main process and creates statistics of
relative frequencies of executed procedures.

The tasking abstractions are defined in module Tasks. The following excerpt
shows the important details.

DEFINITION Tasks;
TYPE

Task = POINTER TO TaskDesc;

TaskDesc = RECORD (Objects.ObjectDesc)
base—: Scheduler; link—: Dispatcher; safe—: BOOLEAN; timer—: input.Timer;
PROCEDURE (T: Task) ConnectTo

(base: Scheduler; link: Dispatcher; safe: BOOLEAN; timer: Input.Timer);

PROCEDURE (T: Task) Do;
PROCEDURE (T: Task) Resume;
PROCEDURE (T: Task) Suspend;
PROCEDURE (T: Task) Sleep (dt: LONGINT);
PROCEDURE (T: Task) State (): LONGINT;

END; '

126

Dispatcher = POINTER TO DispatcherDesc;

DispatcherDesc = RECORD (Objects.ObjectDesc)
PROCEDURE (D: Dispatcher) Resume;
PROCEDURE (D: Dispatcher) Sleep (dt: LONGINT);
PROCEDURE (D: Dispatcher) State (): LONGINT;
PROCEDURE (D: Dispatcher) Suspend;

END;

Scheduler = POINTER TO SchedulerDesc;

SchedulerDesc = RECORD (Objects.FinObjectDesc)
enabled—, preemptive—: BOOLEAN;
PROCEDURE (S: Scheduler) Init (preemptive: BOOLEAN);
PROCEDURE (S: Scheduler) SetControl (enable: BOOLEAN);
PROCEDURE (S: Scheduler) SefTask (t: Task; safe: BOOLEAN);
PROCEDURE {S: Scheduler) Step;

END;

VAR
pre, stdPre—, idle, stdldle—: Scheduler;

The organization follows the generalized Carrier/Link/Rider Scheme. At the
bottom, the actual scheduling discipline is provided by a scheduler (Carrier
level). At the top, the application-specific activity to be scheduled is
implemented as an instance of (a subtype of) type Task (Rider fevel). The N:1
relation between tasks and schedulers and the bottleneck interface is realized
by instances of type Dispatcher (Link level). The two standard scheduling
disciplines (preemptive and idle) are available via variables pre and idle,
respectively. As usually, the variables stdfre and stdldle allow access to the
standard implementations of these.

A scheduler is driven by calls to its Step method. For the idle scheduler this
is done by the main loop, while for the preemptive scheduler Step is invoked
from a timer interrupt handler (see below). A scheduler may be disabled
(SetControl).

A new task is set to a particular scheduling discipline by means of a
scheduler method SetTask which in tum informs the task by calling
ConnectTo. The Do method of a task is periodically invoked as long as the
task is ready. The task can be suspended at any time and resumed later. (A
suspended task is subject to garbage collection as soon as it becomes
unreachable.) Also, it is possible to set a task asleep for a certain amount of
time. The latter possibility is mainly used to reduce the load of the system.
The task methods Resume, Suspend, Sleep, and State all forward to the
corresponding Dispatcher bottleneck. (As generally done in the
Carrier/Link/Rider scheme, the link object is created by the carrier on
invocation of a Set¥ method. The dispatcher object carriers information the

127

scheduler requires to schedule a set task.)

There are no special signalling mechanisms, hence tasks are required to
poll their enabling conditions, e.g. by inspecting a global variable. (A signalling
scheme could be easily added as an extension.)

Preemptive tasking is based on the possibility of installing a scheduler in a
timer. Timers are defined in module Input and have two characteristic values:
unit and grid. Unit defines the resolution of the Time method, i.e. the precision
of the timer in ticks per second, while grid defines the number of ticks
(measured in units) between two scheduler invocations. Since the used timer
is known to a task, the task can adjust its own behavior to realtime
conditions.

DEFINITION Input;
TYPE

Scheduler = PROCEDURE (pc: LONGINT);

Timer = POINTER TO TimerDesc;

TimerDesc = RECORD (Objects.ObjectDesc)
unit—, grid—: LONGINT;
schedule—: Scheduler;
PROCEDURE (T: Timer) Init (S: Scheduler; unit, grid: LONGINT);
PROCEDURE (T: Timer) Time (): LONGINT;

END;

VAR
timer, stdTimer—: Timer;

Monitors. For engines to be used safely, it is important that preemption can be
controlled. A simple but efficient approach has been taken by allowing
individual modules to be registered as monitors. In fact, code executing within
a monitor module will never be preempted. (Careful use of monitors is
required though.) The scheme could be extended easily by introducing
priorities for engines and only preventing preemption by engines that have a
lower priority than the monitor. This has not been done and the simple
monitor construct provided sufficed in all cases considered so far.

DEFINITION Tasks; ...
PROCEDURE Protect (m: Modules.Module; hard: BOOLEAN);
PROCEDURE Unprotect (m: Modules.Module);
PROCEDURE GetStateOf (m: Modules.Module; VAR monitor, hard: BOOLEAN);

By declaring a module to be a hard monitor, unprotecting the module is
disallowed. Otherwise, it is possible to turn a module temporarily into a
monitor by means of paired Protect and Unprotect invocations. The
foundation modules Devices, Objects, Files, and Modules, as well as module

128

Tasks itself are predeclared (hard) monitors.

Multiple Stacks. The possibility of having multiple stacks should not be blocked
by the system design. Hence, the garbage collection mechanism tracing
references from the stack (module Objects, cf. 3.4.2) has been slightly
generalized to support special objects, called reference blocks, that are
scanned for potential references. In principle, the standard stacks are
predefined reference blocks, (RefBlocks are finalizable objects, hence there is a
registering but no unregistering facility.)

DEFINITION Objects;
TYPE
RefBlock = POINTER TO RefBlockDesc;
RefBlockDesc = RECORD (FinObjectDesc)
PROCEDURE (R: RefBlock) GetBounds (VAR lo, hi: LONGINT);
(x%the range [lo, hi) is scanned for pointer candidatesx)
END;

HeapManagerDesc = RECORD (ObjectDesc)

PROCEDURE (H: HeapManager) RegisterRefBlock (rb: RefBlock);
END;

In Section 3.53 the usefulness of the engine abstraction together with
reference blocks will be illustrated by showing how to add threads to the
system without changing any of its existing parts.

34.5 Files, Streams, and Object Externalization

One of the most crucial parts of an operating system is its file system. The
performance of the file system, the elegance and simplicity of its interface, and
the coherence of the provided semantics influence almost all other parts of
the system. One of the clear advantages of the Oberon file system is its simple
interface combined with its sufficiently powerful semantics. The performance
of the Oberon file system, as implemented on the Ceres machine, has proven
to be highly acceptable for most applications. (The performance mostly
depends on the speed of the disk, and the Ceres disk subsystem is rather
slow.) Implementations of the Oberon system on other machines provide file
systems that delegate operations to the underlying operating system. For ports
to UNIX machines with fast disk subsystems the provided performance was
found more than adequate. Hence, it is felt that the simple interface of the
Oberon file system is an ideal bottleneck interface in the sense of the
Carrier/Link/Rider separation scheme.

129

The Oberon system has its file system "burned in", i.e. it is not possible to
extend it by any means. This has been done intentionally so to allow for
acceptable performance on slow machines. In Ethos the principle design
decision to be open on all levels applies to the file system level as well.
Hence, Ethos provides a replaceable file directory object that returns file
objects and maintains the file directory.

3.4.5.1 Sequential and Positionable Streams

To explore all benefits of the Carrier/Link/Rider scheme, the mechanism is
actually rooted on a level below files: General byte streams are defined in
module Objects. Derived from that are arbitrarily positionable streams. Files
then are just a special implementation of such positionable streams. (Texts
are another example of positionable streams, cf. 3.4.6.) The standard stream
rider interface has been chosen to be able to read and write all basic types of
Oberon-2. Thus, iteration over components of constructed types suffices to
map any structure to a stream and vice versa. (How to deal with extensible
structures in a convenient way is explained below.)

DEFINITION Objects;
TYPE
StreamRider = RECORD
base—: Stream; link—: StreamLink; eos: BOOLEAN; res: LONGINT;
PROCEDURE (VAR R: StreamRider) ConnectTo (base: Stream,; link: Object);

PROCEDURE (VAR R: StreamRider) Available (): LONGINT;
PROCEDURE (VAR R: StreamRider) Pos(): LONGINT;
PROCEDURE (VAR R: StreamRider) Read (VAR x: CHAR);
PROCEDURE (VAR R; StreamRider) ReadBlock

(VAR x: ARRAY OF CHAR; beg, len: LONGINT);
PROCEDURE (VAR R: StreamRider) SkipBlock (len: LONGINT);

PROCEDURE (VAR R: StreamRider) ReadShort (VAR n: SHORTINT);
PROCEDURE (VAR R: StreamRider) Readlnt (VAR n: INTEGER);
PROCEDURE (VAR R: StreamRider) ReadLong (VAR n: LONGINT);
PROCEDURE (VAR R: StreamRider) ReadReal (VAR x: REAL);
PROCEDURE (VAR R: StreamRider) ReadLongReal (VAR x: LONGREAL);
PROCEDURE (VAR R: StreamRider) ReadString (VAR s: ARRAY OF CHAR);
PROCEDURE (VAR R: StreamRider) ReadBool (VAR b: BOOLEAN);
PROCEDURE (VAR R: StreamRider) ReadSet (VAR s: SET);

PROCEDURE (VAR R: StreamRider) Write (x: CHAR);
PROCEDURE (VAR R: StreamRider) WriteBlock
(VAR x: ARRAY OF CHAR; beg, len: LONGINT);

PROCEDURE (VAR R: StreamRider) WriteShort (n: SHORTINT);
PROCEDURE (VAR R: StreamRider) Writelnt (n: INTEGER);

130

PROCEDURE (VAR R: StreamRider) WriteLong (n: LONGINT);
PROCEDURE (VAR R: StreamRider) WriteReal (x: REAL);
PROCEDURE (VAR R: StreamRider) WriteLongReal (x: LONGREAL);
PROCEDURE (VAR R: StreamRider) WriteString (s: ARRAY OF CHAR);
PROCEDURE (VAR R: StreamRider) WriteBoo! (b: BOOLEAN);
PROCEDURE (VAR R: StreamRider) WriteSet (s: SET);
PROCEDURE (VAR R: StreamRider) WriteLn;

END;

StreamLink = POINTER TO StreamLinkDesc;
StreamlinkDesc = RECORD (ObjectDesc)
PROCEDURE (S: StreamLink) Available (VAR r: StreamRider): LONGINT;
PROCEDURE (S: StreamLink) Pos (VAR r: StreamRider): LONGINT;
PROCEDURE (S: StreamLink) Read (VAR r: StreamRider; VAR x: CHAR);
PROCEDURE (S: StreamLink) ReadBlock
(VAR r: StreamRider; VAR x: ARRAY OF CHAR; beg, len: LONGINT);
PROCEDURE (S: StreamLink) SkipBlock (VAR r: StreamRider; n: LONGINT);
PROCEDURE (S: Streambink) Write (VAR r: StreamRider; x: CHAR);
PROCEDURE (S: StreamLink) WriteBlock
(VAR r: StreamRider; VAR x: ARRAY OF CHAR; beg, len: LONGINT);
END:

Carrier = POINTER TO CarrierDesc;
CarrierDesc = RECORD (FinObjectDesc) END;

Stream = POINTER TO StreamDesc;

StreamDesc = RECORD (CarrierDesc)
PROCEDURE (S: Stream) SetRider (VAR r: StreamRider);
PROCEDURE (S: Stream) Flush;

END;

PosStream = POINTER TO PosStreamDesc;

PosStreamDesc = RECORD (StreamDesc)
PROCEDURE (S: PosStream) SetRiderAt (VAR r: StreamRider; pos: LONGINT);
PROCEDURE (S: PosStream) Length {): LONGINT;

END;

The Stream Bottleneck Interface. The canonical Carrier/Link/Rider separation is
manifest in the triples Stream / StreamLink / StreamRider and PosStream /
StreamLink / StreamRider, respectively. The abstract StreamRider has to be
subclassed in order to implement concrete mappings from basic types to
sequences of bytes and vice versa. The N:1 relation between riders and
streams and the bottleneck interface is realized by instances of type
StreamLink. Obviously, the bottleneck interface for streams is simple: In
principle, it supports reading and writing of individual bytes. Indeed, it would
be most elegant to support nothing else. Alas, for performance reasons it is

131

necessary to also support block operations. Using block operations it is
possible to transfer almost arbitrary numbers of bytes by means of a single
invocation. Since the byte stream interface is most critical to the overall
system performance this traditional tuning measure was felt necessaty.

The knowledgable reader may compare the Oberon and Ethos byte block operations.
While the Oberon file system provides signatures like (.. VAR x: ARRAY OF
SYSTEM.BYTE; len: LONGINT), Ethos stream operations have signatures of the form (...
VAR x: ARRAY OF CHAR; beg, len: LONGINT). There are two noteworthy differences.

Firstly and trivially, the additional beg parameter adds more flexibility when
implementing scatter-gather schemes in order to avoid double-buffering. As an
example, consider the need to write bytes starting at index 5 of an array. Without the
beg parameter one either has to use single-byte writes, or one has to first copy the
required portion into an auxiliary array. (Admittedly, in most cases the actual parameter
is the constant zero,) Secondly and more subtle, the use of SYSTEM.BYTE has been
avoided. For a discussion of the problems with SYSTEM.BYTE, cf. 2.4.1.

3.4.5.2 Object Externalization and Interalization

When mapping primitive data types to a stream of bytes it is sufficient to use
mapping methods "hard-wired” to the used rider. The task is more difficult
when the mapped data structure contains arbitrary objects. The reason is that
such objects may actually be of any subtype of the type known to the
mapping code. The mapping of an object to a stream of bytes is called
externalization. The inverse mapping of a stream of bytes into an object is
called internalization.

To externalize an object it is essentially sufficient to have an associated
Externalize method. Internalization is by nature a bit more complicated, as it
requires creating the object, which of course cannot be performed by a -
method of that very object. A typical solution is to write out some type
information that upon intemalization is used to allocate the required object.
One can either use the name of a command that allocates objects of the
appropriate type, or, more elegantly, one can use the runtime type
information attached to every object and use it to write out the actual type
name. Then the type name can be used during internalization to create an
instance of that type. The major advantage of the latter approach is its
potential for generic automation, i.e. it can be programmed once and for all,
supporting all possible objects.

The command approach is typically used in the Oberon system, e.g. in the
Write [Szy91] and Draw [WG92] editors. (In newer Oberon versions a module
Types exists that provides about the same type meta-information as available
in Ethos, cf. 34.33) Instead of commands, Ethos uses the type-driven
approach. The roots for this mechanism are defined in module Objects.

132

DEFINITION Objects;
TYPE

Mapper = RECORD (StreamRider)
org, len: LONGINT;
PROCEDURE (VAR R: Mapper) OpenMap;
PROCEDURE (VAR R: Mapper) ReadObiject (VAR obj: Objects.Object);
PROCEDURE (VAR R: Mapper) ReadCarrier (VAR c: Objects.Carrier);
PROCEDURE (VAR R: Mapper) WriteObject (obj: Objects.Object);
PROCEDURE (VAR R: Mapper) WriteCarrier (c: Objects.Carrier);
PROCEDURE (VAR R: Mapper) CloseMap;

END;

Carrier = POINTER TO CarrierDesc;
CarrierDesc = RECORD (FinObjectDesc)
PROCEDURE (C: Carrier) Externalize (VAR r: Mapper);
PROCEDURE (C: Carrier) Internalize (VAR r: Mapper);
END;

Riders of type Mapper are used to read and write objects; refined support is
available for objects that are actually carriers. For plain objects only the
information is handled that is required to allocate new objects upon
internalization. Additionally, if a carrier is used, the methods Internalize and
Externalize are invoked, passing the mapper to the carrier in order to support
recursive handling of data structures. For a concrete carrier class the
internalize and Externalize methods have to be overridden to actually read or
write the individual fields. (Note: The cyclic interrelation of abstract carriers,
abstract streams, and abstract mappers is the reason for putting all these
abstract definitions into the single module Objects.)

Systems exist that support automatic externalization and internalization of
complete data structures. An example is the "Pickle” system that is part of the
Modula-3 library [Nel91]. There, run-time type information is used to
automatically deal with fields of arbitrary objects. For many trivial applications
the use of such a system allows certain simplifications. In practice, however, it
is often required to use a more selective approach. Often, an object contains
redundant information used to tune its performance, but not expected to be
mapped to external representations. Also, it is quite usual that fields should
be coded in some non-generic way to achieve compact representations. To
cope with such demands, Pickles allows to register special externalization and
internalization procedures that in tum override the default behavior.

In Ethos the opposite position was taken. Instead of providing a default
which is often replaced, it is always required to provide the right
externalization and internalization methods from the beginning. (As an
extension, a class may be implemented that implements fully generic
externalization and internalization for all its subclasses.)

133

3.4.5.3 Dealing withAliens

The purpose of externalization and internalization is to decouple the creators
and clients of data structures over time, space, or architectures. Decoupling
over time is the basic concept of a file system: An arbitrary time may elapse
between writing a file and reading it in again. Decoupling over space is what
happens when using external representations to send or distribute data to
other places. Finally, decoupling over architectures allows a sufficiently
architecture-independent external form to be used to transfer data between
different machine or software architectures.

In all these cases the fact that one deals with extensible systems adds a
new potential for problems. When externalizing using a fixed format it can be
expected that internalizing will either work or fail completely. However, if the
externalization is based on a generic treatment of extensible data-structures,
ie. one where extension modules control particular externalizations,
internalization may fail partially. The reason is that it is well possible that
some of the extension modules required for internalization are not available.
Either, because the modules have never been made available to the
internalizing system, or because the available modules are subject to some
version conflict preventing their installation.

If an external form contains the representation of an object that is not
internalizable, such an object is called an alien. Three ways of dealing with
aliens exist. Firstly, one might cancel the whole internalization process when a
single alien is detected. This makes external forms vulnerable to configuration
problems. Secondly, alien objects may be detected and reduced upon
internalization. Here, object reduction means either discarding an object or
projecting it to some base type that happens to be available. The resulting
internal form is thus reduced compared to the full external form:
Re-externalizing the structure leads to loss of information. Thirdly, alien
objects may be kept in an abstract form. If this is done, re-externalization
re-establishes the information that was there in the original external form.

The first alternative is considered rather problematic when designing
extensible systems: The probability of having all existing installations in
mutually fully consistent configurations decreases rapidly with the number of
installations and even faster with the number of orthogonal extension
options. It seems a valid choice only in situations where a missing object
prevents meaningful continuation. The latter two alternatives are more likely
to be considered when using generic externalization and internalization.
However, which of the possibilities is best depends on the particular
application. An example for the third choice is the text system covered by the
next section. (There, extensible objects may float within a text, and aliens are
kept as black-box objects. Storing a text containing such black-box objects
and restoring it when the corresponding extension modules are available, the

134

original text can be recovered.)

For Ethos it was decided to support only the basic building blocks for
supporting various application-level alien handling schemes. Each time a
mapper finds an object that cannot be internalized, it returns (in its fields org
and len) the origin and length of the object's representation in the source
stream; otherwise it retumns the object (and /en = 0). Then, the mapper skips
the alien block and can be used to proceed internalizing from the rest of the
stream. In the client code using a mapper it is decided whether the alien will
be discarded, partially reduced, abstractly encapsulated, or whether
internalization is to be aborted.

Properly dealing with alien objects is considered an absolute necessity of an
extensible system. Hence, it was felt acceptable to pay a certain price for being
able to deal with aliens. The price paid for the Ethos externalization scheme is
the restriction to positionable streams. In order to skip alien blocks in a
stream, the internalization mechanism needs to know the length of blocks
taken by particular objects. Since during externalization there is no easy way
to compute these lengths in advance, a back-patching approach is taken that
reserves a length field in front of each object block. After completing a block
this field is adjusted to the number of bytes that the block actually took.

Mappers check whether the stream they are set on is indeed positionable and cause a
run-time exception otherwise. This is one of the few covariance conflicts in the Ethos
interfaces: To be detected by the type system, it would be necessary to override method
ConnectTo(base: Strearm; ..) of type StreamRider by a method ConnectTo(base:
PosStream; ...) for type Mapper. This is not allowed and would be unsafe as long as
there is no run-time type-check introduced by the compiler. Type-systems that allow
this kind of signature modification for overriding methods are said to support covariant
parameter types.; f. 1.1.1 and 4.4.3.

A more subtle consequence of handling aliens properly is the recursive
externalization of objects. Obviously, if an object has some part objects, these
cannot be internalized in a meaningful way, if the owning object cannot, cf.
Figure 3.18. Far example, one might consider a dictionary object that contains
entries of word pairs. If the dictionary is an alien, then none of the entry
objects can be internalized.

objectn-1 objectn object n+1

Strcam L]

partobjects n.0 ni n2

Figure 3.18 - Sequentialized Part Objects,

135

If object n cannot be internalized, so part objects n.0, n1, and n.2 cannot. For
each object, there is a prolog generated by the generic externalization
mechanism. It contains the type information and the length of the block
taken by the object. In the case of object n, the length in the prolog includes
the lengths of the part objects n.0, n.7, and n.3.

A standard implementation of an object mapper supporting portable external
representations of all basic types is implemented in module Stores. Stores
provides a subtype of Objects.Mapper that implements portable mappings for
all standard types and type-driven, alien-aware mapping of objects. The type
information is maintained in a dictionary such that multiple occurrences of
objects of the same type can be coded efficiently. Of course, dictionary
information for part objects is not available when the enclosing object is an
alien. Hence, dictionaries are nested in a stack fashion by objects externalizing
and intemalizing their part objects. The following code fragment gives a
typical example, assuming that objects of type MainObj will want to drop
alien part objects of a subtype of PartObj.

TYPE
PartObj = POINTER TO PartObjDesc;
PartObJ Desc = RECORD (Objects.CarrierDesc)

END;
MainObj = POINTER TO SampleCbjDesc;
MainObjDesc = RECORD (Objects.CarrierDesc)
part: PartObj (xmay hold instances of arbitrary subtypes of PartObjx)
END:

PROCEDURE (M: MainObj) Externalize (VAR r: Objects.Mapper);
BEGIN r.OpenMap; r. WriteCarrier(M.part); r.CloseMap
END Externalize;

PROCEDURE (M: MainObj) Internalize (VAR r: Objects.Mapper);
BEGIN r.OpenMap; r.ReadCarrier(M.part); r.CloseMap

(%M.part = NIL if part-object does not exist or is alienx)
END Internalize;

By invoking methods OpenMap and CloseMap the mapper is informed to
open a new dictionary and to close it again, thereby proceeding to use the
previously active type dictionary. The only requirement is that the
internalization code is written completely symmetrical to the externalization
code.

Things change a little when an application should deal more specifically
with aliens. In the code example above, aliens will just be discarded, i.e. the
corresponding ReadCarrier invocation will return NIL with a non-zero value in
the len field of the mapper. The following code creates a special closure object

136

that keeps the alien as a black-box and stores it again when re-externalizing
the main object. For the sake of simplicity it is assumed that the stream that
contained the original external form is retained as long as some reference to it
exists. (For files this is the case; for other externalization streams it might be
necessary to copy the data from the stream into some buffer.) Under these
simplifying assumptions it is easy to use the state of the closure object to
re-create the external form of the alien upon externalization.

TYPE
Closure = POINTER TO ClosureDesc;
ClosureDesc = RECORD (PartObjDesc)
s: Objects.PosStream; org, len: LONGINT
END;

PROCEDURE (M: MainObyj) Externalize (VAR r: Objects.Mapper);
VAR r1: Files.Rider; part: PartObj; len: LONGINT; ch: CHAR;
BEGIN
r.OpenMap; part := M.part;
WITH part: Closure DO len = M.len; part.s.SetRiderAt(r1, part.org);
WHILE len > 0 DO r1.Read(ch); r.Write(ch); DEC(len) END
ELSE r.WriteCarrier(part)
END;
r.CloseMap
END Externalize;

PROCEDURE (M: MainObj) Internalize (VAR r: Objects.Mapper);
VAR c: Closure; :
BEGIN
r.OpenMap; r.ReadCarrier(M.part);
IF (M.part = NIL) & (r.len > 0) THEN (xenclose alien object)
NEW(c); c.s := r.base(Objects.PosStream); c.org := r.org; clen :=rlen;
M.part:=c
END;
r.CloseMap
END Internalize;

A common pitfall is to believe that one could simply attach an appropriate
externalization method to the closure type. Then it seems possible to avoid the explicit
treatment of alien closures within the externalization method of the main object. This
is not so, however, as the generic externalization mechanism would write out the type
information of the alien closure and not that of the enclosed alien!

3.4.5.4 The File System

A concrete implementation of positionable streams is contained in module
Files. Files also contains a standard concrete StreamRider implementation that
maps all basic types into byte sequences using the most efficient coding of

137

the used machine. (The resulting mapping is not portable. Hence, it is usually
used for files such as object-iles, which are inherently non-portable.) Finally,
Files defines an abstract file directory, the current directory object, and a
default directory object. The latter always refers to the standard file directory
implemented in Files.

DEFINITION Files;
CONST
insert = O; delete = 1; replace = 2; (xdirectory notification codesx)
TYPE
FileName = ARRAY 32 OF CHAR;
PathName = ARRAY 64 OF CHAR,;

Filelnfo = POINTER TO FileinfoDesc;
FileInfoDesc = RECORD (Objects.ObjectDesc)
next: Filelnfo;
length, date, time: LONGINT;
name: FileName
END;

DirNotifyMsg = RECORD (Objects.NotifyMsg)
dir: Directory; op: INTEGER; name: PathName
END;

Directory = POINTER TO DirectoryDesc;
DirectoryDesc = RECORD (Objects,ObjectDesc)
notify: BOOLEAN;
res: INTEGER;

PROCEDURE (D: Directory) New (): File;
PROCEDURE (D: Directory) This (name: ARRAY OF CHAR): File;
PROCEDURE (D: Directory) Register (F: File; name: ARRAY OF CHARY);

PROCEDURE (D: Directory) GetDir

(prefix: ARRAY OF CHAR; full: BOOLEAN): Fileinfo;
PROCEDURE (D: Directory) Rename (old, new: ARRAY OF CHAR);
PROCEDURE (D: Directory) Delete (name: ARRAY OF CHARY);

PROCEDURE (D: Directory) Getinfo (VAR alioc, free: LONGINT);
END;

VAR
dir, stdDir—: Directory;

The file directory can create new files (method New), retrieve existing files by
name (This), and register a previously created file using a particular name
(Register). The directory can be retrieved as a whole (GetDir), which causes
the directory to be copied out into a list. GetDir may be constrained by adding

138

a non-empty prefix. Normally, GetDir returns names only. By specifying full
information, GetDir also retumns file lengths and dates/times of last
modification. Of course, entries can be renamed or deleted. Finally, it is
possible to acquire some information about the allocation state of the
underlying device (Getinfo). The result code of the latest operation is reflected
by the directory field res. By specifying a file directory to notify, notification
messages are sent upon insertion, deletion, or replacement of directory entries
(cf. 3.4.8.4).

As has been noted Section 2.3.3.1 introducing the Carrier/Link/Rider concept, the
name "rider’ was originally borrowed from the Oberon file system. Hence, it is
interesting to compare the Ethos and Oberon file systems to clarify the different notions

of "rider". In Oberon, a rider is a record structure mostly private to the file system
implementation. It encapsulates the current state of access, i.e. the position in a file, a
hint to a buffer, etc. Thus, an Oberon rider corresponds to an Ethos link object.
However, an Oberon rider is declared and allocated by the client of the file system,
while an Ethos link is allocated by the corresponding stream object.

On the other hand, an Oberon rider is used as an access medium to a file. Therefore,
it also has similarities with an Ethos rider. The principal difference is that an Oberon
rider works only in conjunction with files provided by the Oberon file system, while an
Ethos rider works on every possible stream. For that reason the Oberon rider's role is
played by the combination of an Ethos rider and an Ethos link.

File Buffering.
Since there is an increasingly significant access-time gap between primary and
secondary stores, an effective file caching scheme has a major impact on the
overall system performance. As in the Oberon system, Ethos maintains file
buffers on the level of file objects. Each file object has a list of buffers
attached to it. A physical file is organized into a sequence of pages, usually
corresponding to sectors of the secondary storage device. A buffer holds the
contents of one of these pages, plus the page number of the cached page.
Link objects contain a hint (pointer), which buffer should be used.
Whenever a file access is performed, it is checked whether the hint is still
valid, i.e. whether the buffer referred to by the link contains the expected page
number. If so (cache and hint hit), the file access is performed by reading or
writing the buffer; when a buffer is written to it is marked modified. If the
buffer hint fails, it is checked whether any of the other buffers belonging to
the file contains the required page. If so (cache hit), the hint is adjusted and
the found buffer used. Finally, if the required page is not currently in any of
the buffers (cache miss), the corresponding sector is sought and loaded into a
new buffer. To prevent consumption of an unlimited number of buffers, a
replacement strategy is used whenever the number of buffers used by a file
reaches a certain limit. In this case, one of the existing buffers is taken,
flushed to disk, if marked modified, and over-written by the requested page.
Other than in Oberon, the buffering strategy is chosen to be uniform, i.e. it

139

is not tried to detect certain access patterns — like sequential scan - in order
to adjust the buffer replacement strategy. Instead, the system allocates new
buffers until reaching the limit of buffers per file. Then all further buffer
requests are handled by cyclic replacement. Thus, if a file is accessed
sequentially, the last kN bytes are kept in the file buffer, where k is the
maximum number of buffers per file, and N is the size of a buffer. Thus, small
files are kept in memory after being read the first time. Also, many
applications are effectively based on "file windows". For example, a file based
text editor will exhibit a certain locality by clustering accesses within the
currently edited range.

File Releasing.

Whenever a file object is unreachable it is subject to finalization, i.e. the
garbage collector will discard it eventually. As long as a file is registered in the
file directory, the external resources bound to a file, i.e. the disk sectors used,
remain reachable and must be retained. However, when finalizing a file that is
not (or no longer) registered in the file directory, the external resources of the
file could be released. Likewise, when deleting a file from the file directory and
when there are no remaining references to the file object, the sectors used by
the file could be released. If these actions are taken automatically, it can be
said that garbage collection extends to the disk.

The Oberon file system provides a dangerous alternative. Here, a file may be
explicitly purged, whereby the programmer declares that the file is no longer
used and its sectors should be released. If the programmer errs and purges a
file too early, a dangling reference results; if the programmer follows a too
conservative approach, a memory leak like situation follows. To avoid such
hazardous situations, the Ethos file system does not provide a purge operation.
Instead, the general finalization strategy is used to release unused disk sectors.
The only significant increase in costs involves the file delete operation, which
in practice is used rather infrequently.

The question may arise why it Is necessary at all to collect disk sectors. At least,
whenever the system is booted, a disk reservation bitmap is created by scanning the
directory, effectively releasing unused sectors. Experiences with Oberon show that the
typical once-a-day booting of the system is maore than sufficlent to prevent exhaustion
of disk space. However, the situation is different when operating a continuous service,
as typical for remote servers. Then, consuming disk sectors without ever releasing them
guarantees that the server will eventually run out of disk space.

File Directory.

The standard file directory is implemented using a B-Tree [BM72]. A global
array of page buffers is used as a level-cache. Hence, accessing the same B-Tree
page several times in a series of operations is optimized. Also, accessing file
names close to each other in an alphabetic ordering is optimized.

140

As a neat side-effect the implementation of the B-Tree got simplified compared to an
implementation caching pages directly within procedure activation records. Since the
recursive B-Tree operations use pointers to pages in the level-cache, it is easy to deal
with symmetric cases by first swapping pointers. If pages are directly kept on the
activation stack, swapping pages is too expensive.

34.6 The Text System

The Ethos text system has undergone several revisions. After some early experimental
versions, it reached a state where its usefulness became clear. As a result, the Ethos text
system got ported to the Oberon system, where it lost some of its flexibility inherent in
the Ethos system, but also got matured to become a proven usable sub-system of
Oberon, A result of this effort was the Write document editor [Szy92a] for Oberon, and
a large set of extensions provided by Write users. Later, the new text system got
completely integrated into Oberon, replacing the original text system by an upward
compatible one. As soon as the Write editor and the underlying text system had
stabilized within Oberon, they have been ported back to Ethos, where certain
generalizations were again applied. — This thesis has been prepared using Write. The
Oberon version was used to avoid the need for porting the many existing extensions to
Ethos.

An Ethos text is an attributed positionable stream. Module Texts defines the
abstract interface to texts, and provides — by means of a directory object —
access to a standard text implementation. All riders connectable to general
streams may be used with texts. The common case of transforming basic
types into readable representations using the ASCII character set is covered by
a rider implementation exported by Texts. Also, Texts exports an extension of
that rider class, supporting access to text specific attributes. The latter rider
type is constrained to streams of (a subtype of) type Texts.Text.

A detailed coverage of the text system and its extension model may be found
in [Szy92a), also presenting a wide variety of extensions. [Szy91] adds
discussions on certain design decisions. The following gives a concise outline
and summarizes the important ideas.

Conceptually, a text is considered a sequence of attributed text objecis The
most important text objects are normal characters. A text object may also be
an instance of a class. Associated attributes are a font (combining family, size,
and style), a color, and a vertical displacement. An EBNF syntax describes the
abstract text model:

Text = {AttrObject}.

AttrObject = Attributes TextObject.

Attributes = font color offset.

TextObject = characterObject | extendedObject.

141

There are intentionally no structures superimposed on a text. It will be shown
below how to incorporate range attributes (like paragraph formatting styles)
without changing the text model. For the sake of simplicity, from now on,
character will be used for "characterObject’, and element for "extendedObject".
For example, an element may be a graphics floating in a text (eg.

). Elements have been used all over this thesis, in form of
pictures, graphics, tables, and the like.

The simple text model leads to a small set of elementary editing operations
defined on texts, like deleting an arbitrary subrange of the text. The
unconstrained application of these editing operations is only possible due to
the flat (unstructured) text model. Furthermore, the simple text model allows
tools consuming or operating on texts to be implemented in a simple and
straightforward way. For example, the compiler can readily operate on any text
by scanning it in a standard linear fashion. To further ease the implementation
of such tools, standard projections are defined from characters to elements,
and vice versa: (x4S denotes the projection of x into the set 5)

x € Elements = xJCharacter :==1Cq4
x € Characters = xJElement := NIL

In other words, a text can be interpreted as a plain character sequence, in
which all elements are projected to a fixed ASCIl code (1C4g, selected to be <
SPACE,si). Thus, tools can treat elements as white space characters. A tool
interested in elements only, can also treat a text as a sequence of elements,
where characters are projected to the special element value NIL.

As mentioned above, the Oberon and Ethos text systems have converged by
means of their extension concepts. However, the text editing model of
Oberon texts is significantly more complex than that of Ethos. The following
graph compares the Oberon and Ethos text editing models. It is surprising
that the Oberon Texts module introduces that many abstractions (and
therefore operations). On the other hand, the generalized stream interface of
the Ethos text system almost enforces a more unified and simpler model.

Also, it is surprising that the Oberon Texts module contains a major design flaw in that
it declares Reader and Writer types to be subtypes of the Files.Rider type. The reason for
doing so is the mere fact that Reader and Writer are implemented in a file-based
manner, and therefore {internally!) need to use riders. However, the subtype property
cannot and indeed should not be used, as the Rider attributes reflect the conceptionally
meaningless state of the internal use of file pieces. For example, the field eof inherited
from Rider has no meaningful value for Reader and Writer instances. Likewise, the
procedures of Files return meaningless values when a Reader or Writer is passed
instead of a Rider. This points out a confusion of is-a and uses-a relations.

142

l Writer l Reader r Scanner I

J Write Read Scan
Insert, Append

::I > r Changelooks
Copy @ ’ Text = Delete

1 Save o
Store pen
Recall Load

Y

RecallBuffer File

Figure 3.19 - The Oberon Text System.

Rider

Write W Read, Scan

Changetooks, Delete
= InsertAt, Append, InsertCopyAt

Externalize Internalize
ExternalizeAscii InternalizeAscli

Mapper

Figure 3.20 - The Ethos Text System.

The only text-specific operations are those supporting text editing. As in
Oberon, subranges of the text are specified as intervals closed to the left and
open to the right, e.g. [beg, end). Changing the attribute settings of a subrange
(Changelooks) or deleting a subrange (Delete) involve a single text. Inserting
a subrange of a text (InsertAt, Append), or inserting a copy of a subrange of a
text (InsertCopyAt) involve two texts. Operation Append is a mere shortcut for
the common case of inserting a text at the end of another one. Also,
operation InsertAt may be seen as a combination of InsertCopyAt and Delete.
Having special append and non-copying insertion methods enables text
implementations to optimize common cases.

DEFINITION Texts;
IMPORT Objects, Files, Fonts;

CONST
ElemChar = 1CX;
(%NotifyMsg.opx)
replace = 0; insert = 1; delete = 2;

143

(*Rider.resx)
inval = 100; BadClass = 110;
(%Rider.classx)
Char = 0; String = 1; Short = 2; Int = 3; Long = 4; Real = 5; LongReal = 6; Set = 7;
IntSet = {Short, Int}; LongSet = {Short, Int, Long};
LongRealSet = {Real, LongReal};
(xTextRider.classx)
Flement = 8;
(¥Changelooks(sel)*)
font = 0; color = 1; offset = 2;

TYPE
Attributes = POINTER TO AttributesDesc;
AttributesDesc = RECORD (Objects.ObjectDesc)
fnt: Fonts.Font; col, voff: LONGINT
END;

Elem = POINTER TO ElemDesc;
ElemDesc = RECORD (Objects.CarrierDesc)

base—: Text; w—, h—; LONGINT;

PROCEDURE (E: Elem) Resize (w, h: LONGINT);
END;

Text = POINTER TO TextDesc;
TextDesc = RECORD (Objects.PosStreamDesc)
notify: BOOLEAN;
PROCEDURE (T: Text) InternalizeAscii (VAR r: Objects.Mapper);
PROCEDURE (T: Text) ExternalizeAscii (VAR r: Objects.Mapper);
PROCEDURE (T: Text) InsertCopyAt (pos: LONGINT; t: Text; beg, end: LONGINT);
PROCEDURE (T: Text) InsertAt (pos: LONGINT; t: Text; beg, end: LONGINT);
PROCEDURE (T: Text) Append (t: Text);
PROCEDURE (T: Text) Delete (beg, end: LONGINT);
PROCEDURE (T: Text) ChangeAttr
(beg, end: LONGINT; sel: SET; VAR attr: AttributesDesc);
END;

Link = POINTER TO LinkDesc;

LinkDesc = RECORD (Objects.StreamLinkDesc)
set, get: Attributes; elem: Elem;
PROCEDURE (L: Link) SetAttr (sel: SET; VAR attr: AttributesDesc);
PROCEDURE (L: Link) ReadElem (VAR r: TextRider; VAR elem: Elem);
PROCEDURE (L: Link) ReadPrevElem (VAR r: TextRider; VAR elem: Elem);
PROCEDURE (L: Link) WriteElem (VAR r: TextRider; elem: Elem);

END;

Rider = RECORD (Objects.StreamRider)
line: INTEGER; nextCh: CHAR;
class: INTEGER;
ch: CHAR; set: SET; bool: BOOLEAN;
int, intbase: LONGINT,; real: LONGREAL; elem: Elem;

144

len: INTEGER; str: ARRAY 64 OF CHAR;
PROCEDURE (VAR R: Rider) Scan;
PROCEDURE (VAR R: Rider) WritelntForm
(n: LONGINT; base, w: INTEGER; fillCh, baseCh: CHAR);
PROCEDURE (VAR R: Rider) WriteRealFixForm (x: LONGREAL; w, k: INTEGER);
PROCEDURE (VAR R: Rider) WriteRealForm (x: LONGREAL; w: INTEGER);
PROCEDURE (VAR R: Rider) WriteDate (date: LONGINT);
PROCEDURE (VAR R: Rider) WriteTime (time: LONGINT); -
END;

TextRider = RECORD (Rider)
PROCEDURE (VAR R: TextRider) GetAttr (VAR a: AttributesDesc);
PROCEDURE (VAR R: TextRider) SetAttr (sel: SET; VAR a: AttributesDesc);
PROCEDURE (VAR R: TextRider) SetColor (col: LONGINT);
PROCEDURE (VAR R: TextRider) SetFont (fnt: Fonts.Font);
PROCEDURE (VAR R: TextRider) SetOffset (voff: LONGINT);

(%SetColor, SetFont, SetOffset are shortcuts for SetAttrx)

PROCEDURE (VAR R: TextRider) ReadElem (VAR e: Elem);
PROCEDURE (VAR R: TextRider) ReadPrevElem (VAR e: Elem);
PROCEDURE (VAR R: TextRider) WriteElem (e: Elem);

END;

Directory = POINTER TO DirectoryDesc;
DirectoryDesc = RECORD (Objects.ObjectDesc)

ref, spill: Files.Directory;

fnt: Fonts.Directory;

attr: Attributes;

PROCEDURE (D: Directory) New (): Text;

PROCEDURE (D: Directory) This (name: ARRAY OF CHAR): Text;
END; :

VAR dir, stdDir—: Directory;
log, logBuf, scarp: Text;

END Texts.

Again, the Carrier/Link/Rider scheme has been applied. The interesting point
is to note that texts and files are both positionable streams and that it is
therefore possible to use both interchangingly wherever a positionable stream
suffices. The only significant difference between texts and files are the option
to edit texts - ie. to insert and delete subsequences - and the attributes
added to text-objects. Likewise, the rider defined in Texts can be used to
create a standard ASCII file by simply setting it to a file. Or, the rider defined
in Files can be used to write arbitrary bytes to a text which then can be used
to edit the byte stream in an efficient manner.

By encapsulating the set of attributes attachable to a text-object in type
Attributes, the text system can be extended to support new attributes. Doing
so requires implementing extensions of texts, links, and text riders. Also, it is

145

possible to extend texts in other ways, i.e. to overcome the restrictions of
standard texts by maintaining some kind of structure superimposed on a text.

When extending texts, the problem arises that there may be different text
implementations existing at the same time in a system. This is of no problem
unless inter-text operations are used. The definition of Texts contains three
such operations: InsertCopyAt, InsertAt, and Append. It is important to note
that in each case the modified text has control. In the cases of non-copying
insertion (InsertAt, Append), the source text is modified by means of the
Delete operation. Thus, it is again the modified text that has control.

To avoid covariance conflicts, it is necessary to support any text as
parameter to these operations. Of course, the full support of attributes and an
efficient implementation of copying and insertion is usually only possible, if
both involved texts are of the same type. Hence, the method implementations
check for type identity (e.g. using the type meta-information provided by
module Modules). If both texts are of the same type, the internals of both
texts are under control of the same module and operations are both efficient
and complete. If the types of the texts differ, a different technique called rider
conversion is used. Since texts have a common stream interface, it is always
possible to copy from a text of a different implementation by reading it
character by character, copying only those attributes defined for source and
destination text.

Scanning a Text.

Often a text is used to pass parameter values. Hence, scanning of texts to
extract values of basic types (like integers or strings) is a common task. In
Oberon, a subtype of Texts.Reader, called Texts.Scanner, is used to scan texts.
Since the Ethos rider interface requests a rider to read values of basic types
directly, and since for texts it is not certain whether an appropriate sequence
of characters will be encountered in a text, the standard text rider scans the
text to return a value of the requested type. (If the scanned type does not
match the requested type, an error status is returned.) Often the type of the
next token to scan is not known in advance. Therefore the scan method of
text riders is available to directly scan the next token. Then the scanner returns
a class code, indicating which kind of token has been scanned in. As for all
Ethos riders, all basic types of the language are supported. For example, it is
possible to write a readable representation of a set to a text, and scan it back
in.

Elements.

Having the text model defined, it is time to look at the precise definition of
elements. At the model level, there is only one basic method defined for
elements (Resize) allowing to redimension an element. Since Elem is a
subtype of Objects.Carrier, elements also have methods for copying,

146

internalization, and externalization. That is, as far as module Texts is
concerned, elements are text objects which have a bounding box, but no
further semantics. In order to display an element its implementation has to be
derived from some subtype of type Elem. Typically, view implementations
define appropriate element subtypes, adding methods for proper interaction
with a view. (Details follow in 3.4.8)

Displaying Texts.

Obviously, a text also needs to be formatted, displayed, and printed. However,
these operations are considered view specific and their description is thus
postponed to Section 3.4.8, covering TextFrames. A question left open so far
is how attributes spanning ranges of characters can be added to texts. In
batch oriented typesetting systems (like TEX [Knu84]) interspersed markups
are used to define attributes that remain valid till changed by a following
markup. (A markup is a textually distinguished keyword interpreted by a
formatter.) This idea is taken into the Ethos text model by using special
elements as markups. For example, a paragraph control element (parc, for
short) is used to define paragraph formatting attributes (left, centered, right, or
block adjusted text, tabulator settings, line spacing, etc.). Since a markup is
implemented as a single element and elements may be interactive, direct
manipulation of attributes is possible. Also, the markup can be interpreted
when displaying a text (cf. 3.4.8); changes to a markup can be made visible
directly. Hence, a parc can behave similar to a LisaWrite [Wil83] or a
MacWrite ruler.

Implementation of Standard Texts.

From the definition of texts it is clear that the two kinds of text objects,
namely characters and elements, can be treated identically. Indeed this is
done in the Glyph approach found in Extended InterViews [CL90]. However,
the resulting performance and storage penalties seem prohibitive. Instead, runs
are defined (Figure 3.21) and optimized. A run is a sequence of text objects
having the same set of attributes. (In the current version, elements are always
kept in a run of their own). This leads to the following syntax of the text
implementation:

Text = {Run}.

Run = Attributes {TextObject}.

Attributes = font color offset.

TextObject = characterObject | extendedObject.

147

next — —1+ —1> -1
Jont | Times10 Times 10i Times 10 Times 10 Times 10
len 5 4 21 1 15
pos 1
|
Vb ¢

pointer to element

This text contains anelement and has 5 runs

Figure 3.21 ~ Implementation of Texts Using Attributed File Pieces.

Note that the existence of runs is exclusively an optimization issue. Clients of
texts need not be aware of it. Under the assumption that characters dominate
elements, the implementation of character runs has been optimized. The
resulting efficiency reaches that of text editors that have no concept of
elements.

The standard text implementation has been designed such that texts of
arbitrary size can be viewed and edited. Hence, a file-based approach using a
so-called piece-list [Gut85] has been chosen. As the actual characters of a text
are not maintained in memory, opening a text that contains no elements is
very fast. However, if elements are contained in a text, they are all loaded
when opening the text. An element might again be file-based, thus deferring
costly read operations.

The directory object defined in Texts contains two references to file
directories (ref and spill). The former is used whenever a text is retrieved using
This, while the latter is used by file-based text implementations to create
temporary files, e.g. when writing to a text, or when creating a new one using
New. By replacing the spill reference to return memory-based "files”, the text
system can be tuned to retain newly written text in memory, while still being
able to handle large file-based texts.

Whenever a text is opened that contains an element that has not yet been
used in the current session, the defining modules are loaded. If this fails (e.g.
the extension is unavailable), the facilities of module Stores are used to create
an alien element. An alien element is displayed in a standard way (e.g. as a
box) and is stored in a way to retain the information contained in the original
element. Hence, it is possible to open documents even if certain extensions
are currently not available. Furthermore, it is possible to ediit and store such a
document again without losing information contained in the alien elements.

148

34.7 The Display System

For modern interactive systems the flexible treatment of high-resolution raster
devices became a standard requirement. Especially bitmapped displays and
high-quality raster printers need be supported. Common to all these devices is
the modelling of the output medium as a rectangular grid of picture elements
— pixels - individually addressable using two-dimensional coordinates. Each of
the pixels has a value out of a device-specific set. Typical value sets are
{background, foreground} (e.g. {black, white}) for monochrome devices,
{0.N=1} for grey-scale devices or for devices using a color-lookup table - clut
-, and {0.N~-1}x{0..N-1}x{0..N-1} for devices based on a three-dimensional
color model (e.g. red-green-blue). Besides different coloring models, the
devices differ significantly in their resolution - pixels per inch, often dots per
inch (dpi) - and relative image size (pixels?) they support. Table 31 lists
some typical combinations of these parameters.

typical device relative size resolution absolute size color model
[pixels?] [dpil [mm?2] [bit/pixel]

PC VGA 15" screen 640x%480 64 253%190 1/4/8 clut

Macintosh 12" screen | 640%480 72 225x169 1/4/8 clut; 24 RGB

Ceres 17" screen 1024%800 N 285%223 1

Chameleon 17" screen| 1152%910 102 285%223 8clut

Laser printer 1 2336%3425 300 197%289 1

Laser printer 2 3114x4566 400 197%289 1

Photo-Typesetter 37228%54614 2400 394x578 1

Table 3.1 - Characteristics of Typical Raster Devices.

The common subset of this stunning variety of devices is the pixelmap model.
Therefore, the appropriate fow-level abstraction that a display system should
support is a pixelmap. Next, one has to decide what operations to perform on
pixelmaps, In principle, a single operation SetPixel(x, y) would suffice, but just
as block operations are provided for stream interfaces, it is important to select
the proper higher pixelmap operations to achieve acceptable performance.
Since pixelmaps are device abstractions, it is necessary to define a
bottleneck-interface, i.e. a set of primitive operations that has to be supported
by every device presenting itself as a pixelmap. As for all bottleneck-interfaces,
the set of operations is not extensible as it forms the connection between
arbitrary clients using it and arbitrary device drivers implementing it. Chosing
the right set of primitives is difficult, and other than for file-systems, the
existing pixelmap interfaces differ significantly. On the one hand, it is not clear

149

what coloring or imaging models to support. On the other hand the set of
graphical primitives to be supported is highly application-dependent. For a
discussion of many typical operations cf. [Sta89].

Another issue easily overlooked when designing a pixelmap interface is the
available bandwidth between the issueing application and the performing
graphics system. If both are located on a single machine, the bandwidth is
usually quite high, e.g. limited by the bus bandwidth. Often the imaging
device and the controlling application are not that close to each other.
Examples are remote printing or display services. There, the bandwidth is
typically limitted by some interconnecting network and the associated
network protocols. A typical solution is the textual representation of the
operations to perform and interpretation at the place of the device, eg.
PostScript [Ado85]. Another solution is the definition of a bottleneck that
preserves sufficient information about the operations to be performed, such
that the packaged parameters can be transmitted at modest costs. The latter
approach is taken for example by the X Window System [SG86].

For many applications a single abstract pixelmap device covering all the
needs of displaying and printing information avoids having separate code for
printer and display output. For example, in the Oberon system the screen and
printer abstractions are completely separate, hence inducing a doubling of
code in many Oberon applications. A common result is that certain
applications "cannot print’, ie. the additional printing code is just not
implemented. This is not a new problem, and it has been attacked by systems
like Display-PostScript [Web89]. However, it is felt that these systems are
overly complex and tend to consume significant amounts of computing
resources.

3.4.7.1 The Pixelmap Bottleneck Interface and the Coloring Model

The Ethos pixelmap abstraction is based on a rather general coloring model,
an abstract resolution model, and a set of only four basic operations. The
coloring model defines two color spaces, both effectively coded into a 32-bit
integer. The first color space is device-independent ("abstract”) and meant to
be used by data models that carry color attributes. The second space is
device-dependent and in its coding completely determined by individual
devices. The device-independent color space is defined in Figure 3.22,

150

msb Isb
T | B J]aG[RY
L red 0.255
green 0.255 p subtractive RGB coloring model
blue 0..255
texture 0.127 degree of texture in 1/128
invert 0/1 0: paint, 1: invert mode

The meaning of texture is device dependent:
on a b/w device it means half-toning
on a color device it means intensity (i.e. grey value of color code FF'FFFF)

Special values with device-independent meaning:

Xx00' 0000 Black (texture value ignored)
1FFF'FFFF White, 25% intensity

3FFF'FFFF White, 50% intensity

5FFF'FFFF White, 75% intensity

7FFF'FFFF White, 100% intensity

FFFF'FFFF Fullyinvert (other values with invert=1 reserved)

Figure 3.22 - Ethos Device-Independent Color Space,

Mapping from abstract colors to device colors is supported by a pair of
mapping functions.

MapColor: Abstract-Color - Device-Color
NormColor: Device-Color -» Abstract-Color

The abstract resolution model is based on a device-independent unit of
1/36'000 mm. Without rounding errors, the unit can be expressed as
1/12'700 point or 1/914'400 inch. (Rationals for chosing a device-independent
unit are given in [Vet91].) All data model coordinates should be based on
these units. Pixelmaps export a field unit, declaring how many abstract units
relate to a single pixel of the device. Hence the mapping of global to device
measures is a division by the device unit. Likewise, device coordinates can be
mapped to global ones by multiplying with the device unit. (An application
should cumulate coordinate values in the abstract space and avoid iterated
mappings between both spaces to achieve maximum precision.) Table 3.2
lists some typical unit values.

151

dpi units/dot example
64 14218 PCVGA15" screen
72 12700 Macintosh 12" screen
91 10'000 Ceres 17" screen

102 8921 - Chameleon 17" screen

300 3048 Laser printer 1

400 2'286 Laser printer 2

2400 381 Photo-Typesetter

Table 3.2 - Typical Unit Values.

The unit of 1/36'000 mm is rather fine-grained: It supports a resolution of about
30 nm! Its values has been chosen in the course of the Opus project [Vet91] and was
meant to support a variety of device resolutions and absolute measures (mm, inches,
points) while avoiding rounding errors. In principle, one might argue that 36'000
should be replaced by a smaller value, e.g. some power of two. However, since the
pixelmap units are variable values, no performance gain would result. The advantage of
dealing with slightly smaller numbers is negligible: The photo-typesetter shows that
16-bit integers are still too restrictive,

Typical applications map colors and measures from abstract model to device
space and then issue a series of primitive operations on the pixelmap. Hence,
all primitives are defined to accept parameters in device colors and device
coordinates. To decide which primitives should be supported, typical
applications have been analyzed for their use of pixelmaps. The following set
of primitives has been isolated for the bottleneck interface.

Dot (x,y, color)

Block (x, y. w, h, color, px, py)

Char (x,y, color, font, char)

String (x,, color, font, array of char)

Block and String are mainly used to optimize common iterated applications of
Dot and Char, respectively. For String this optimization is especially important
when considering a transfer to a remote machine, as characters are expected
to take a huge portion of the issued operations. The significance of not using
dot to fill a rectangular area is evident. A subtle detail about Block is hidden
by the two parameters px and py (read "pin-x" and "pin-y", respectively). To
understand the importance of these parameters the texture coding of colors
must be considered. For example, a2 monochrome pixelmap may support
various "grey’ patterns to simulate intensities. However, as soon as the color
parameter contrals more than one pixel it is important to have an alignment
pin-point. Otherwise, it is not possible to avoid distortions after scrolling or

152

when drawing a complex area by appending multiple rectangular areas.
Usually, the pin-point is related to some fixed point in model space and
therefore invariant under scrolling in device space.

The Oberon module Display provides an operation ReplPattern which allows to fill a
rectangular area by replicating an arbitrary pattern. ReplPattern does not support a
pin-point, instead it aligns patterns to the screen origin. Hence, whenever scrolling a
view the whole view needs to be redrawn to avoid distortions. If a pin-point is present it
is possible to use faster block-move plus partial re-drawing techniques to implement
scrolling,

3.4.7.2 The Childmap Concept

Besides supporting a set of output primitives, pixelmaps provide for intra- and
inter-pixelmap block copying. For inter-pixelmap block copies an additional
problem is introduced, since source and destination pixelmaps in general
have different color models, resolutions, and storage mappings. This problem
has been "solved by avoidance": Instead of copying (part of) a view from one
pixelmap to another, applications are expected to redraw (part of) the view
when a copy between pixelmaps of different types would be necessary.
However, completely preventing inter-pixelmap copying is too restrictive. For
example, popup-menus or double-buffering techniques need a background
pixelmap that is not related to a device, but used as a buffer to copy to and
from.

To support background pixelmaps without introducing the complexity of
arbitrary inter-pixelmap block copies, the concept of childmaps has been
introduced. Every pixelmap has an operation that on demand allocates a
childmap of given minimal width and height. Such a childmap has the same
internal structure (color, resolution, and storage model) as the creating
pixelmap. Thus, copying between a pixelmap and its childmaps, and also
between childmaps of the same pixelmap, is easy to understand and easy to
implement. As a useful side-effect, childmaps remove the resource allocation
problem that occurs when providing a shared "background pixelmap®, as is
done for example in the Oberon system. Since.the Oberon background
pixelmap is shared, no application can rely on its context and therefore all
uses must be restricted to short-lived temporary buffering.

3.4.7.3 The Font Subsystem

A particularly hard aspect of suppotting pixelmaps of multiple resolutions is
the representation of typographically acceptable characters. A common
approach is to support outline-fonts, often called meta-fonts, that describe the
geometric characteristics of characters without referring to a particular device
resolution. Typical examples are the TEX Metafont [Knu86], PostScript

153

[Ado85], and TrueType [App90a] font description and rastering systems.
Besides rastering a character specifically for a certain device resolution the
outline-font needs to be tailored for graceful simplification of character shapes
when rastering to devices with rather low resolutions (like current displays
have). It is noteworthy that the problem of character mapping to devices
occurs already at a lower level of abstraction: Even patterns cannot be
mapped to devices of varying resolutions without introducing significant
distortions. (The exception being primitive patterns, especially grey shades.) In
general, it can be said that it is a conceptual mistake to allow the definition
and application of arbitrary patterns when dealing with generalized pixelmap
models. Therefore, the Ethos pixelmap model only supports colored (and
potentially grey-shaded) block fills plus placement of characters specified by
character code and font.

A pixelmap either passes the character/font pair to some remote service, or
asks the font object to retumn a specific pattern for the pixelmap's resolution.
By replacing the implementation of the font object, varying font machineries
can be installed without disturbing clients of the pixelmap abstraction. (Since
the pattern is indirectly retrieved by the pixelmap, instead of being retrieved by
the client and passed through the interface, the problem of optimizing pattern
transfer to a remote service is avoided.)

Often, an application needs only the bounding box information for a
character, e.g. if the character rendering and placing happens completely on a
remote machine. To optimize this situation, font objects have an additional
operation returning only the box of a character.

The Oberon font system contains several misconceptions. First of all, fonts are named
using the file names of pre-rastered screen fonts, e.g. "Syntax10.5¢cn.Fnt". In turn, models
like texts contain names of device specific fonts. (Even Oberon's Printer module takes
names of screen fonts to control what printer fonts to be used!) Secondly, the font
system ~ realized in modules Display and Fonts — does not allow to separate abstract
fonts from device specific resolutions. Thirdly, the Display module directly operates on
patterns. This complicates implementations that support remote devices, as is done by
Oberon ports for X Window [BCFx921[SG86].

3.4.7.4 Managing Multiple Screens

The predominant implementation of the pixelmap abstraction is the raster
screen used to interact with the machine. Often, it is useful to have a support
for multiple screens, e.g. a monochrome and a color screen. To simplify
applications using screen coordinates, it is useful to place the screens within a
single coordinate system, thus avoiding the application-level distinction to
what screen a certain coordinate belongs. This was done in QuickDraw
[App85] for the Macintosh, and is also done in the Oberon system.

Screen number / has an origin (x, 0) with x; 2 0. The first screen is always

154

installed at origin (0, 0). Different screens may have different resolutions and
color models. Thus, the unified coordinate space is meant to help in
organizing a user-interface spanning multiple screens, but it does not
introduce some kind of metrics spanning multiple screens. For example, in
the picture, it is possible that x,—x; < xq—Xo, while at the same time the display
area of screen 1 is physically wider than that of screen 0. This may happen, if

screen 1 has less pixels per row but also if it has a smaller resolution than
screen 0.

screen 0 screen 1 screen 2

0 X4

0 2 X

Figure 3.23 — Placement of Multiple Screens in a Single Coordinate System.

3.4.7.5 Module Frames — Carrier/Link/Rider Scheme for Pixelmaps

Collecting the concepts discussed above into a single unified module Frames
leads to the following interface. The entities giving module Frames its name
are frames: Rectangular areas attached to a pixelmap. Frames interact with
pixelmaps by means of a bottleneck interface. The bottleneck interface
supports low-level clipping to rectangular bounds by means of so-called ports.
A port is again a rectangular area of a pixelmap, and typically a subset of the
area covered by the frame using the port.

Frame < Pixelmap 5 '
{

Port ¢ Frame

Pixelmap

Figure 3.24 — Frames, Ports, and Pixelmaps.

155

Again, the Carrier/Link/Rider scheme has been applied to achieve an orderly
decomposition. Pixelmaps are carriers, ports are links, and frames are riders.
The idea is that a frame may add higherlevel operations and abstractions. For
example, a frame may introduce a model space coordinate system with
operations to zoom, pan, or rotate the model coordinates before mapping
them to device coordinates. Of course, many different frames may reside on
the same pixelmap. The frame-to-pixelmap bottleneck is represented by ports
which also are clipping windows onto pixelmaps. The SetFrame operation of
a pixelmap prevents the setting of a port outside of the pixelmap's bounds.
Hence, low-level clipping is limited to the bounds actually presented by the
port without risking invalid access. It should be noted that it would not suffice
to use the frame bounds for clipping: Often it is required to restore part of a
frame, e.g. after scrolling the displayed contents. At the same time the frame
coordinates should be preserved (cf. 3.4.8). The solution is to setup a port that
clips to a subset of the frame area.

The interface of module Frames is listed below. It is noteworthy that there is a
pattern descriptor, but that there are no operations on ports that directly make
use of patterns. Instead, the only means to define arbitrary patterns and apply
them to a pixelmap is by means of defining an appropriate font that
encapsulates the device-specific pattern to raster mapping. For example, Ethos
uses a font called EthosPatterns that contains system patterns, e.g. cursor,
pointer, and caret patterns.

As for most Ethos modules, Frames also contains a default
implementation. It implements at least one screen driver for a screen located
at coordinate (0, 0). By means of procedure ThisScreen the default screen and
any other installed screen can be located within the screen coordinate system.
Screen allocation is done in ascending order along the x-axis (Figure 3.23).
Hence, ThisScreen may also be used to enumerate all screens available at any
one time.

DEFINITION Frames;
IMPORT Objects;

CONST mm = 36000;

TYPE
Pattern = POINTER TO PatternDesc;
PatternDesc = RECORD
w, h, mw: INTEGER; (xmetrics in carrier spacex)
map—: POINTER TO ARRAY OF SET
END;

156

Char = POINTER TO CharDesc;
CharDesc = RECORD (PatternDesc)

dx, x,y: INTEGER (%metrics in carrier spacex)
END;

Font = POINTER TO FontDesc;
FontDesc = RECORD (Objects.CarrierDesc)
PROCEDURE (F: Font) ThisChar (ch: CHAR; unit: LONGINT): Char;
PROCEDURE (F: Font) ThisBox (ch: CHAR; unit: LONGINT); Char;
(#request box information only = may return ch.map = NiLx)
END;

NormalColor = LONGINT; (xdevice independentx)
Color = LONGINT;

@

‘ Port = POINTER TO PortDesc;

PortDesc = RECORD (Objects.ObjectDesc)
X—, y— W—, h—: LONGINT;
PROCEDURE (P: Port) Resize (x, y, w, h: LONGINT);
PROCEDURE (P: Port) Fit (F: Frame);
PROCEDURE (P: Port) GetDot (x, y: LONGINT): Color;
PROCEDURE (P: Port) Dot (x, y: LONGINT; col: Color);
PROCEDURE (P: Port) Block (x, y, w, h: LONGINT; col: Color; px, py: LONGINT);
PROCEDURE (P: Port) Char (x, y: LONGINT; col: Color; fnt: Font; ch: CHAR);
PROCEDURE (P: Port) String
(x, y: LONGINT; col: Color; fnt: Font; VAR str: ARRAY OF CHAR);
PROCEDURE (P: Port) CopyBlock (sx, sy, w, h, dx, dy: LONGINT);
PROCEDURE (P: Port) CopyBlockFrom (src: Port; sx, sy, w, h, dx, dy: LONGINT);
END; ’

PixelMap = POINTER TO PixelMapDesc;
PixelMapDesc = RECORD (Objects.CarrierDesc)
X—, y—, W—, h—: LONGINT (xallocated carrier spacex);
unit—, colors—: LONGINT;
bkgnd—, tone-, forgnd-, invert-: Color;
PROCEDURE (P; PixelMap) Init (x, y, w, h, unit, colors: LONGINT);
PROCEDURE (P: PixelMap) NormcCalor (col: Color): NormalColor;
PROCEDURE (P: PixelMap) MapColor (col: NormalColor): Color;
PROCEDURE (P: PixelMap) SetFrame (VAR f: Frame; x, y, w, h: LONGINT);
PROCEDURE (P: PixelMap) NewChild (w, h: LONGINT): PixelMap;
END;

Screen = POINTER TO ScreenDesc;

ScreenDesc = RECORD (PixelMapDesc)
next—: Screen

END;

157

Frame = RECORD (Objects.ObjectDesc)
%—, y— W~, h—: LONGINT; (xrectangular region in carrier spacex;)
base—: PixelMap; link-: Port;
PROCEDURE (VAR F: Frame) ConnectTo
(base: PixelMap; link: Port; x, y, w, h: LONGINT);
PROCEDURE (VAR F: Frame) Dot (x, y: LONGINT; col: Color);
PROCEDURE (VAR F: Frame) Block
(X, y, W, h: LONGINT; col: Color; px, py: LONGINT);
PROCEDURE (VAR F: Frame) Char
(%, y: LONGINT; col: Color; fnt: Font; ch: CHAR);
PROCEDURE (VAR F: Frame) String
(%, y: LONGINT; col: Color; fnt: Font; str: ARRAY OF CHAR);
PROCEDURE (VAR F: Frame) CopyBlock (sx, sy, w, h, dx, dy: LONGINT);
PROCEDURE (VAR F: Frame) Restore (x, y, w, h: LONGINT);
PROCEDURE (VAR F: Frame) Resize (x, y, w, h: LONGINT);
PROCEDURE (VAR F: Frame) Broadcast (VAR msg: Objects. Notn'yMsg),
PROCEDURE (VAR F: Frame) Handle (VAR msg: Objects.NotifyMsg);
END;

VAR
bkgnd—, tone—, forgnd—, invert-: NormalColor;

(% Geometric Utilities %)
PROCEDURE Contains (F: Frame; x, y: LONGINT): BOOLEAN;
PROCEDURE Clip (VAR F: Frame; x, y, w, h: LONGINT); (% F:=Fn (x,y, w, h) %)
PROCEDURE ClipPort (P: Port; x,y, w, h: LONGINT); (% Pt =P a(x,y, w, h) %)
PROCEDURE SetClippedPort (VAR F: Frame; x, y, w, h: LONGINT);

(% Flink :=F n (x,y,w, h) %)

(% General %)
PROCEDURE InstaliScreen (S: Screen);
PROCEDURE ThisScreen (x: LONGINT): Screen;

END Frames.

A few standard colors in global color space are exported by Frames.
Applications using only these can expect to achieve good results on most
pixelmaps. Otherwise, pixelmaps contain a field colors, giving the number of
different colors available. This can be used by applications to switch from
color to texture filled areas when outputting to monochrome instead of color
pixelmaps.

Frames have methods Handle and Broadcast to deal with message records.
The intention is that operations typically handled by broadcasting to all
subframes are coded using message records instead of methods. Thus, the
default implementation of Handle calls Broadcast for the given message, while
the default implementation of Broadcast ignores the message, ie. does
nothing.

158

Frames.Frame is declared as a record, not as a pointer. This allows for using light-weight
frames directly without allocating a separate object. Examples might be frames used by
an application to implement buttons or the like placed directly within some other
frame. However, more heavy-weight frames are usually requested from directory objects
or installed within generic container frames, making a pointer to a frame necessary.
Such a pointer type can be introduced when needed, and indeed Is introduced in
module Viewers (cf. 3.4.8.1).

34.8 User Interface Concepts

The user interface of a system is the way it presents itself to the "world". A
careful design of the elements and style of interaction is important to arrive at
a masterable system. A set of clearly worked-out conventions is generally a
good idea (e.g. [App85]). A more direct way has been taken for Ethos: The
major user interface abstractions are captured in appropriate frameworks.
Typical applications will just provide some concrete implementations derived
from the abstractions of the frameworks. Hence, as long as no defaults are
overridden, the system behaves consistently since shared behavior is
implemented by shared code. This is similar to the use of application
frameworks in traditional systems (e.g. MacApp [App90b]). (Of course, in
Ethos almost all pre-defined abstractions can be partially or completely
replaced, creating a potentially very different system.)

3.4.8.1 Low-Level Organization of Screens

User-Interfaces built within Ethos are expected to rely on two primary
resources: raster displays and direct manipulation devices, like mice. To
simplify the task of higher-level user-interface components, it is useful to have
some low-level organization of screen-areas into sub-areas. Basically, there are
two well-known techniques of organizing a screen, one based on screen tiling
[Tei84], the other on overlapping windows. (For a general discussion cf.
[Wil89]). The former is based on subdividing a screen into non-overlapping
areas, while the latter is based on the so-called "desktop metaphor” simulating
the chaos of overlapping sheets of paper on a desktop. It is felt that the
overlapping windows approach is well suited for small screens, where
essentially only one sufficiently large work-area can be presented. However, on
modern workstation hardware, this limitation is no longer present. Just to the
opposite, if the usable screen area is rather large, overlapping window systems
tend to use only a portion of it, while (by definition) a tiling system uses all
the usable space, cf. Figure 3.25.

159

It has been observed that users arrange their overlapping windows on large screen by
hand such that they effectively do not overlap! To cope with this paradox situations,
many overlapping window applications today provide tiling-like options, i.e. are able to
automatically place their windows in a tiling-like fashion.

Tile Track Viewer Window

Arbitrary Tifing Tiling with Tracks & Viewers Overlapping Windows
Figure 3.25 — Tiling vs. Overlapping Windows.

In Ethos the module Viewers introduces three organizational levels of
abstraction: fayouts, tracks, and viewers. A layout adds a logical organization
to a screen. The decoupling of screens and layouts helps separating concerns:
A screen is concerned about displaying. pixels, while a layout is concemed
about organizing a screen into logical sub-areas. Standard layouts are vertically
tiled into a series of tracks. Tracks are horizontally tiled into a series of viewers.
(Tracks and viewers with almost identical semantics already exist in Oberon.
The layout abstraction is approximated by the hard-wired features of the
Oberon Viewers module.)

To compensate for the no-overlaps commitment of tiling systems, Oberon
introduced the possibility to cover one or more tracks completely by
overlaying a new track. This has proven to be a powerful and versatile feature
of the Oberon viewer system and therefore has been retained in Ethos.
Furthermore, Oberon allows to move the separation line between two viewers,
effectively resizing the two involved viewers. This has been generalized in
Ethos to also allow moving the separation line between two tracks. (This
generalization introduces slight technical complications as tracks, like viewers,
have a guaranteed minimal size. A track to be resized may cover several tracks
below. Then, the minimal sizes of the covered tracks need be added and used
to constrain the resizing of the covering track.)

Figure 3.26 shows how viewers, tracks, and layouts are interrelated. Viewers
and tracks are kept in rings containing a filler-trailer. A track ring is maintained
under preservation of the invariant that the tracks in the ring do not overlap,
have the same y-coordinate and height as their underlying layout, and that the
sum of the track widths equals the width of the underlying layout. Likewise,
the invariant of a viewer ring is that the viewers do not overlap, have the same
x-coordinate and width as their underlying track, and that the sum of the

160

viewer heights equals that of the underlying track. Except for filler tracks, all
tracks have a guaranteed minimal width. Also, all viewers that are not filler
viewers have a guaranteed minimal height.

ring with filler viewer

next Siller viewer y

T, i
X
viewers

Viewers
filler track /
| next é / <] ring with filler track
Tracks Z
tracks

next

Layouts
next

Screens

Figure 3.26 — Screen Organization using Layouts, Tracks, and Viewers.

Since tracks may cover one or more tracks below, each track has a (potentially
empty) list of covered tracks. Of course, each covered track may again cover
tracks even further below, leading to a push-down stack structure, cf. Figure
3.27. The invariant here is that a track is always as wide as the sum of the
widths of the covered tracks. Therefore, it needs to be at least as wide as the
sum of the minimal widths of the covered tracks.

| — ~+——— Visible Tracks (“youngest”)
I +below !
| L + - | Covered Tracks l

I
: ;__g_"_t:e o : Second-level Covered Tracks ("oldest")
— { Underlying Layout

Figure 3.27 — Covered Tracks, Handled as a Push-Down Stack.

161

Another abstraction introduced by module viewers are markers. A marker
maintains visible interaction states, e.g. the mouse cursor and the pointing
marker, and the caret and selection of the text editor. Markers with an iconic
appearance are supported by subtype CharMarker: A character out of a font is
used to represent the marker on the screen. (Examples: cursor, pointer, caret;
all using the font EthosPatterns.) Markers with varying looks are covered by
subtype AreaMarker. There, the bounding box of the actual markings is used
to define the marker. (Example: selections.)

Markers are derived from frames and have a pin-point {(sometimes called
"hotspot") (pinX, pinY) and a field on indicating their visibility. Using the
operation Draw(x, ¥), the pin-point of a marker may be moved to the point (x,
y), also making the marker visible. A marker may be made invisible by
invoking operation Fade. A special operation is provided to remove all markers
within a certain rectangular area. Usually, this is done before applying updates
to that area.

Two standard markers are defined in Viewers: The mouse cursor and the
pointer. The former serves to track the current mouse position, while the latter
is used to mark a specific position on the screen. The state of the pointer is
evaluated by auxiliary procedures MarkedFrame and MarkedViewer to retrieve
the currently marked (innermost) frame and the currently marked viewer,
respectively.

DEFINITION Viewers;
IMPORT Objects, Frames, Fonts;

CONST resume =1; suspend = 0;

TYPE
Marker = POINTER TO MarkerDesc;
MarkerDesc = RECORD (Frames.Frame)
on-: BOOLEAN; pinX-, pinY—=: LONGINT; (xpinX, pinY in screen coordinatesx)
PROCEDURE (M: Marker) Draw (x, y: LONGINT);
PROCEDURE (M: Marker) Fade;
END;

CharMarker = POINTER TO CharMarkerDesc;
CharMarkerDesc = RECORD (MarkerDesc)

fnt-: Fonts.Font; ch—: CHAR;

PROCEDURE (M: CharMarker) SetLooks (fnt: Fonts.Font; ch: CHAR);
END;

AreaMarker = POINTER TO AreaMarkerDesc;
AreaMarkerDesc = RECORD (MarkerDesc)

areaW-—, areaH—: LONGINT,;

PROCEDURE (M: AreaMarker) SetArea {(w, h: LONGCINT);
END;

162

Frame = POINTER TO Frames.Frame;

Viewer = POINTER TO ViewerDesc;

ViewerDesc = RECORD (Frames.Frame)
next-: Viewer; state—: INTEGER;
PROCEDURE (V: Viewer) Open (x, y: LONGINT);
PROCEDURE (V: Viewer) MinH (): LONGINT;
PROCEDURE (V: Viewer) Close;

END;

Track = POINTER TO TrackDesc;

TrackDesc = RECORD (Frames.Frame)
next—, below—: Track; viewers—: Viewer; (xbelow is Nil-terminated listx)
PROCEDURE (T: Track) Open (x: LONGINT; filler: Viewer);
PROCEDURE (T: Track) Cover (x, w: LONGINT; filler: Viewer);
PROCEDURE (T: Track) MinW (): LONGINT;
PROCEDURE (T: Track) Allocviewer (): LONGINT;

(wreturns "good" y-coordinate for next viewer to be opened in Tx)
PROCEDURE (T: Track) ThisViewer (y: LONGINT): Viewer;
PROCEDURE (T: Track) Close;

END;

Layout = POINTER TO LayoutDesc;
LayoutDesc = RECORD (Frames.Frame)
next—: Layout; tracks—: Track;
PROCEDURE (L: Layout) Open (filler: Viewer);
PROCEDURE (L: Layout) AllocTrack (): LONGINT;
(%returns "good" x-coordinate for next track to be opened in Lx)
PROCEDURE (L: Layout) ThisTrack (x: LONGINT): Track;
END;

LocateMsg = RECORD (Objects.NotifyMsg)
X, y: LONGINT; f: Frame

END;

StateMsg = RECORD (Objects.NotifyMsg)

* id: INTEGER; X, ¥, W, h: LONGINT

END;

VAR

all—: RECORD x-, y—, w—, h—: LONGINT END; (xbounding box of all screensx)
cursor, pointer: Marker; ‘

PROCEDURE RemoveMarks (x, y, w, h: LONGINT);
PROCEDURE RemoveMarksin (port: Frames.Port);
PROCEDURE MarkerDefauits;

PROCEDURE Broadcast (VAR msg: Objects.NotifyMsg);
PROCEDURE Restore (x, y, w, h: LONGINT);
PROCEDURE ThisLayout (x: LONGINT): Layout;

163

PROCEDURE ThisTrack (x: LONGINT): Track;
PROCEDURE ThisViewer (x, y: LONGINT): Viewer;
PROCEDURE ThisFrame (x, y: LONGINT): Frame;
PROCEDURE NotifierDefaults;

PROCEDURE MarkedFrame (visiblyOnly: BOOLEAN): Frame;
PROCEDURE MarkedViewer (visiblyOnly: BOOLEAN): Viewer;

PROCEDURE RecallViewer (): Viewer; (xviewer that got closed or replaced lastx)
END Viewers.

It is noteworthy that module Viewers introduces completely independent
abstractions for layouts, tracks, and viewers. This differs significantly from the
Oberon model where a single abstraction frame is used for all organizational
purposes. In turn every frame in the Oberon system contains fields dsc and
next, just in case that the frame has subframes (dsc), or is part of a list of
frames (next). This was felt too heavy-weight to be part of the frame
abstraction. In Ethos the sub-structure of a frame (if present) is completely
private to that frame. Instead of allowing a generic traversal of the hierarchical
frame structure, each frame has standard methods for broadcasting and
handling messages. In turn, Ethos frames are conceptually more light-weight
than Oberon frames. ‘

A positive result of not over-generalizing the nesting structure of frames is
the possibility to declare pointers with strongest possible types. For example,
a track contains a rings of viewers. Since a track is not a special case of some
general frame having sub-frames, the track contains a pointer viewers of type
Viewer. Likewise, viewers are threaded into the ring using pointers next of type
Viewer. This makes the data-structure much more comprehensible, while at
the same time saving many type guards in the actual code.

The argument that one might save code by introducing one general frame nesting
concept, as was done in the Object Oberon library [MTG89], did not hold in practice.
The implementations of, say, layouts and tracks, are actually quite different and a
generalization would simply merge both, leading to a less comprehensible design.

Another interesting issue is the use of Oberon-style message records instead
of Oberon-2-style methods in module Viewers. The idea is that all messages
that are forwarded (often broadcasted) to sub-frames without explicitly
distinguishing among different messages are implemented using message
records. In other words, whenever a message needs to be interpreted by the
receiving frame, instead of being forwarded, methods are used. The mixture of
the two approaches may seem a little awkward. However, the resulting
achievement of having interfaces as expressive as possible was felt more
important. (Using only methods would lead to an awkward design indeed:
Instead of having a single broadcast mechanism for abstract messages, each

164

abstraction would have to add a special broadcast for each
broadcast-message newly defined.)

3.4.8.2 Command Invocation Conventions

The text system plays a crucial role in both, the Oberon and Ethos systems. In
Oberon it is predetermined to be the standard and primary data model used
for command invocation and command parameter passing. This is reflected
by having it located just below module Oberon, while all other data models
are implemented in modules not known to Oberon. In Ethos, the text system
is not as predetermined to play such a central role, but the standard
configuration of Ethos relies just as heavily on it as Oberon does. The
following (partial) module diagrams compare the Oberon and Ethos
structures, as far as the placement of data models is concerned. All modules
below the separation line belong to the core of Oberon or Ethos, respectively.
(In principle, Texts could import Graphics, or vice versa. Hence, on the level of
data models, a certain asymmetry may exist even in the Ethos system.)

| et | | paw | [wite | [ont |
t ¥ ¥)

[TextFrames] I GFrames] [TextFrames | GFrames j
1 1
Graphics Texts Graphics I
o — e e o=t Rt
Oberon Ethos
’ 3 Y
Texts
¥
Files Files

Figure 3.28 — Placement of Module Texts. Left: Oberon System — Right: Ethos System.

In Oberon, a command is an arbitrary (parameterless and exported)
procedure. it can be invoked by name, i.e. by using the procedure name and
the name of the implementing module. Usually, commands are called by
means of a command interpreter. In Oberon, every part of a text visible on the
screen can be interpreted as a command by applying a certain mouse click
combination to it If the text clicked at follows the form M.P, where M is a
module and P a procedure name, the system tries to call command M.P. Most
commands expect some parameters. For example, a command to open a text

165

for editing expects the name of the particular text to be opened. Since
commands are parameterless procedures, parameters are passed by
convention: The command interpreter sets some global variables such that
they indicate the context of the command. These global variables are then,
again by convention, interpreted by called commands.

This is the spot, where Oberon introduces some predetermination of
module Texts: Module Oberon contains a global variable of type Parlist that
already contains fields text and pos, indicating the textual context of the
command and the position just after the command's name. Every Oberon
command can expect that these fields are set to something meaningful by the
calling command interpreter. The following code fragment shows the typical
interaction of caller (command interpreter) and callee (command).

PROCEDURE Caller (name: ARRAY 32 OF CHAR; VAR res: INTEGER);
VAR par: Oberon.ParList;
frame: Display.Frame; text: Texts.Text; pos: LONGINT; (xactual parametersx)
BEGIN ...
NEW(par); par.frame := frame; par.text := text; par.pos := pos;
Oberon.Call(name, par, FALSE, res);

END Caller;

PROCEDURE Calleex;
VAR S: Texts.Scanner;

BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(S); (xscan actual parametersx)

END Callee;

Since Ethos retained the Oberon concept of commands, the question arises
how Ethos performs parameter passing from command interpreters to
commands. Before going into the details, a small discourse on the
extensibility of calling conventions for commands may be in order. In Oberon,
the standard parameter record may be extended to add additional parameters.
However, the extension must be known to caller and callee.

In Ethos, a different approach has been taken. Every module providing a
new data model (texts, graphics, pictures, etc) also provides a global
parameter variable. By time-stamping each of these plus having a standard
time-stamp variable in module Ethos, commands can find out, whether
certain parameters are present, or not. This way, Ethos decouples callers and
callees completely: Every data model known to the caller can be used to
deposit corresponding parameters, and every data model known to the callee
can be used to check for valid parameters. Again, the following code fragment
shows the typical interaction of caller and callee - this time using the Ethos
model. For the sake of easy comparison, texts are again used as parameters,

166

PROCEDURE Caller (name: ARRAY 32 OF CHAR; VAR res: INTEGER);
VAR frame: Viewers.Frame; text: Texts.Text; pos: LONGINT; (xactual parametersx)
BEGIN ..,
Texts.par.time = Ethos.par.time + 1;
Texts.par.text := text; Texts.par.beg := pos; Texts.par.end := text.Length();
Ethos.Call(hame, frame, FALSE, res); (increments Ethos.par.timex)

END Caller;

PROCEDURE Calleex;
VAR §: Texts.Rider;
BEGIN
IF Texts.par.time = Ethos par.time THEN
Texts.par.text.SetRiderAt(S, Texts.par.beg);
S.Scan; (xscan actual parametersx)

END
END Callee;

The additional check for validity of a particular parameter makes the Ethos
command slightly more complicated. On the other hand, commands that
need a text as parameter, but that are called by command interpreters that
cannot provide a meaningful textual context are in trouble when using the
Oberon conventions: All commands simply rely on having a textual parameter
available. An example is a graphics system that supports invocation of
commands bound to some kind of button. Then it is unnatural to add an
artificially created, empty text-parameter just to avoid run-time errors when a
command is called that expects a text-parameter. Instead, appropriate
graphical parameters should be passed. This way a command can check
whether it is called with appropriate parameters and, if not, use a default
behavior or signal an error message.

DEFINITION Ethos;
IMPORT Objects, Viewers;

TYPE

Param = RECORD
time: LONGINT; frame: Viewers.Frame; viewer: Viewers.Viewer

END;

InputMsg = RECORD (Objects.NotifyMsg)
ch: CHAR

END;

CursorMsg = RECORD (Objects.NotifyMsg)
%, y: LONGINT;
keys: SET

END;

167

PointerMsg = RECORD (Objects.NotifyMsg)
x,y: LONGINT
END;
DefocusMsg = RECORD (Objects.NotifyMsg) END;

VAR
par: Param;
focus—: Viewers.Frame; (xalways validx)

PROCEDURE Collect (cost: INTEGER);
(%decrements internal counter by cost, when counter < 0 cause garbage collectionx)
PROCEDURE Separate (cmd: ARRAY OF CHAR; VAR mod, ident: ARRAY OF CHAR);

PROCEDURE Install (mod: ARRAY OF CHAR);
(%if module mad is not present, it is tried to load itx)

PROCEDURE Call
(cmd: ARRAY OF CHAR; frame: Viewers,Frame; new: BOOLEAN; VAR res: INTEGER);
(xautomatically sets par.viewer if frame # NiLx)

PROCEDURE PassFocus (f: Viewers.Frame); (%passing NIL is validx)

PROCEDURE SystemKey (ch: CHARY);
(xstandard handling of system keys, e.g. ESC to defocus and remove all marksx)
PROCEDURE Loop;
END Ethos.

3.4.8.3 Standard Look and Feel

Based on modules Viewers and Ethos, module Looks defines standard viewers
and standard viewer components that can be used to compose viewers with a
common "look and feel". The standard viewers — called twin-viewers — contain
two sub-frames, a head and a body frame, cf. Figure 3.29. The separation line
between head and body frame is interactively adjustable while the viewer is
open. A twin-viewer also implements the interactive adjustment of track and
viewer separation lines that coincide with one of the viewer's borders.

168

[—————— =1
: headframe |
|

: body-frame :
| I
I]
I |
) |
| |
| !
b el |
N border

Figure 3.29 - Twin-Viewer — Screen Organization using Tracks and Twin-Viewers,

Head and body frames are displayed the same way to help placing arbitrary concrete
frames into both. In Oberon, the head frames are displayed using inverse video,
requiring all frames installed as head frames to display their contents using inverse
mode operations. This was felt to restrictive.

The second set of abstractions provided by Looks are components used to
create scrollable views with interactive scrollers. Looks defines Scrollable to be
a frame containing a contents frame and two scroller frames. (A scroller may
have zero width or height, effectively making both scrollers optional.) The
contents frame has a simple interface hiding the details of concrete scroller
components. The idea is that a frame displaying some view should only be
concerned with the view itself. Outer borders and scroll-bars are added by the
Scrollable abstraction.

X-Scroller !

Y=Scroller I

Scrollable Contents

Figure 3.30 - Scrollable with two Scrollbars ~ with one Scrollbar - Framed (without Scrollbars)

In the Oberon system, no generic support of the Scrollable kind exists. Borders and
scroll-bars are implemented over and over again for every new viewer class.

169

Scrollable frames without scroll-bars are normally used for the head-frames of
twin-viewers, where typically only a border but no scroll-bars are wished.

DEFINITION Looks;
IMPORT Objects, Frames, Viewers;

TYPE
Contents = POINTER TO ContentsDesc;
ContentsDesc = RECORD (Frames.Frame)
PROCEDURE (VAR C: ContentsDesc) GetRanges (VAR w, h: LONGINT);
(xextent of the model spacex)
PROCEDURE (VAR C: ContentsDesc) XPos (): LONGINT;
PROCEDURE (VAR C: ContentsDesc) YPos (): LONGINT;
(#logical positions in model space corresponding to current scrolling positionx)
PROCEDURE (VAR C: ContentsDesc) TrackXPos
(VAR x, y: LONGINT; VAR keysum: SET; VAR pos0, pos1: LONGINT);
(»interactive scrolling feedback requested by x-scrollers)
PROCEDURE (VAR C: ContentsDesc) TrackYPos
(VAR x, y: LONGINT; VAR keysum: SET; VAR pos0, pos1: LONGINT);
(winteractive scrolling feedback requested by y-scrollerx)
PROCEDURE (VAR C: ContentsDesc) SetXPos (pos: LONGINT);
PROCEDURE (VAR C: ContentsDesc) SetYPos (pos: LONGINT);
(xscrolf view to the given logical positions in model spacex)
END;

XScroller = POINTER TO XScrollerDesc;
XScrollerDesc = RECORD (Frames.Frame)

contents—: Contents; tickH—: LONGINT;

PROCEDURE (VAR S: XScrollerDesc) Init (c: Contents; tickH: LONGINT);
END;
YScrolier = POINTER TO YScrollerDesc;
YScrollerDesc = RECORD (Frames.Frame)

contents—: Contents; tickw—: LONGINT;

PROCEDURE (VAR S: YScrollerDesc) Init (c: Contents; tickwW: LONGINT);
END;

Scrollable = POINTER TO ScrollableDesc;
ScrollableDesc = RECORD (Frames.Frame)
xscroller—: XScroller; yscroller—: YScroller; contents—: Contents;
barw-, barH—, left—, right—, bottom—, top—: LONGINT;
PROCEDURE (VAR S: ScrollableDesc) Init
(sx: XScroller; sy: Yscroller; ¢: Contents;
barw, barH, left, right, bottom, top: LONGINT);
END;

170

Viewer = POINTER TO ViewerDesc;
ViewerDesc = RECORD (Viewers.ViewerDesc)
headH-, headDefH—: LONGINT;
head—-, body-: Viewers.Frame
PROCEDURE (VAR V: ViewerDesc) Init
(head, body: Viewers.Frame; headH: LONGINT);
PROCEDURE (VAR V: ViewerDesc) ShiftGap (headH: LONGINT);
PROCEDURE (VAR V: ViewerDesc) TitleOf (): Viewers.Frame;
PROCEDURE (VAR V: ViewerDesc) ContentsOf (): Viewers.Frame;
END;

Directory = POINTER TO DirectoryDesc;

DirectoryDesc = RECORD (Objects.ObjectDesc)
tickW, barW, tickH, barH: LONGINT; (xdimensions of scroll-bars, tick marksx)
scriLeft, scriRight, scriBottom, scrlTop: LONGINT; (xborders for scrollable casex)
frmLeft, frmRight, frmBottom, frmTop: LONGINT; (%borders for framed casex)
headH: LONGINT;
PROCEDURE (D: Directory) NewLayout (): Viewers.Layout;
PROCEDURE (D: Directory) NewTrack (): Viewers.Track;
PROCEDURE (D: Directory) NewViewer (head, body: Viewers.Frame): Viewer;

PROCEDURE (D: Directory) NewFiller (): Viewers.Frame;
PROCEDURE (D: Directory) NewFillerViewer (): Viewer;

PROCEDURE (D: Directory) NewXScroller (c: Contents): XScroller;
PROCEDURE (D: Directory) NewYScroller {c: Contents): YScroller;
PROCEDURE (D: Directory) NewFramed (c: Contents): Viewers,Frame;
PROCEDURE (D: Directory) NewScrollable

{sx: XScroller; sy: YScroller; ¢: Contents): Scrollable;

PROCEDURE (D: Directory) AllocNormalViewer (VAR x, y: LONGINT);
(xdetermine track to open "normal” viewers in — & la Oberon user trackx)
PROCEDURE (D: Directory) AllocSpecialViewer (VAR x, y: LONGINT);
(xdetermine track to open "special” viewers in — & la Oberon system trackx)
END;

ScrollerMsg = RECORD (Objects.NotifyMsg)
(%notify scrollers that f has scrolledx)
f: Viewers.Frame
END;
LocateMsg = RECORD (Objects.NotifyMsg)
(%locate significant sub—frame in corresponding subtreex)
f: Viewers.Frame
END;

VAR

dir, stdDir—: Directory;

171

PROCEDURE OpenViewer (D: Directory; v: Viewers.Viewer; x, y: LONGINT);
(xshorthand to alloc and create track (If necessary), alloc and open viewer,
and restore screen areax)
PROCEDURE SetDirDefaults;
PROCEDURE SetlayoutDefaults;
PROCEDURE SetMouseDefaults;
END Looks.

Looks follows the usual Ethos directory object conventions. Hence, it is easy
to change the common "look & feel" of the system partially or in total.

3.4.8.4 Coupling of Models and Views — An Example: TextFrames

Following the MVC principle (cf. 2.3.2), data models and data views in Ethos
are strictly separated. A data model is changed by invoking operations private
to the model. Then, a model may send a notification message to its views
informing them that it has changed. Such notification mechanisms are
handled by a general mechanism in module Objects. There, it is possible to
register recipients for notification messages. For example, the viewer system
installs a single notifier that broadcasts every notification message that it
receives to all layouts. (Layouts in turn broadcast to all their tracks, tracks to
viewers, viewers to sub-frames, etc.)

Interesting examples of structures in Ethos that notify upon state changes are
the file directories, module directories, texts, and any other data models
provided as extensions. The notifications sent by the file and module
directories can be used to display up-to-date views showing lists of files or
modules fulfilling certain criteria.

Under controlled conditions it is sometimes desirable to turn the
notification mechanism off. For example, a transactional modification of a
model involving many small steps may take too long or cause screen flicker
due to frequent updates, or both. Individual data models may take care of this .
problem, either by introducing some transaction concept, or — less robust, but
far simpler — by providing a flag to turn notification on or off.

The typical model-view relation in standard Ethos is manifest in the text
system. Just as in standard Oberon, texts are data models that notify after
each modification. The typical receiver of text update notifications are text
frames. In Ethos, module TextFrames defines and implements a functionally
rather complete view to texts. TextFrames supports all features found in the
frames of Write [Szy92a], the standard document editor of the Oberon
system. As in Oberon, a frame also implements direct manipulation features,
making a frame a combination of a view and a controller component.

172

TextFrames also defines elements derived from the text system's element
type (cf. 3.4.6). Elements defined in Texts are strictly limited to the model
level, i.e. have no capabilities to display themselves in a view. TextFrames
extends these elements to allow for self-representation in a text frame. The
protocol used to display an element has two phases. In a first phase elements
are requested to compute their actual size (PrepareDisplay). The second phase
then requests actual display of the element within some allocated space. The
two-phase protocol allows elements to have varying sizes, e.g. depending on
their contents or on the output medium.

A special element type is defined to support paragraph formatting. These
elements are called paragraph controls (parcs for short) and affect the
formatting of the text following them up to the next parc or the end of the
text. Parcs and their attributes must be known to text frames if paragraph
formatting should be visible. However, the exact behavior of parcs is irrelevant
for text frames. Hence, a separate module ParcElems defines an extension and
provides direct-manipulation functionality for parcs.

Module TextFrames is also interesting for the problems it causes in the
context of the Ethos extension policy. Like most other Ethos services,
TextFrames defines an abstract text frame and provides a directory object to
request some concrete implementation of it. To extend a text frame one has
to implement one anew, perhaps forwarding most interface activities to the
standard implementation.

This Is just what happens when extending an Oberon implementation: A handler picks
up some messages and forwards others to the standard handler implementation.

Since text frames are rather heavy-weight (have many methods and fields), it
is a little tedious to implement extensions. It has been observed that common
extensions to text frames do not deal with the view component. Instead, the
controller component is extended to support different mouse-click or keyboard
handling features. Hence, for text frames the controller component has been
opened for separate extension. This is done by routing all invocations (dealing
with the controller component of a frame) via a controller object installed in
the text frame. The standard controller object just forwards all controller
activities to the frame, while an application-specific one might filter some of
the controller invocations and react upon them in a specific way. For example,
a small Lisp interpreter written for Oberon [Gri91] has been ported to Ethos.
The only extension made to text frames is a special interpretation of the
Linefeed key: It is used to evaluate the expression to the left of the caret. All
that was required to do so, was to implement a small controfler and install it
into the used text frames.

The typical interaction of a frame and its controller is illustrated by the
following example showing the events taking place when a mouse click into

173

the frame is detected. (The sequence below assumes the use of a standard,
i.e. inactive controller.)

1. user clicks with mouse module Fthos sends an input message M to the
frame containing the mouse cursor

2. F.Handle(M) text frame F receives input message M

3. F.controller.Edit(F, x, y, keys) text frame calls controller to handle mouse input

4, C.Edit(F, x, y, keys) astandard controller just forwards to its frame

5. F.Edit(x, y, keys) standard edit routine locates mouse click position

6. F.controller.TrackCaret(F, x, y, keys) click should cause placement of caret

7. C.TrackCaret(F, x, y, keys) again, standard controller just forwards to F

8. F.TrackCaret(F, x, y, keys) caret is tracked until mouse has been released

The text frame invokes its controller whenever a control activity on the next
finer level of granularity is required. For example, the message handler calls
the controller to handle a mouse click. The mouse click handler calls the
controller to handle a track placement operation.

The efficiency of this scheme is by no means a problem: User interaction happens at
rather low frequencies. Also the response time visible when producing some tracking
feedback is not affected while tracking a certain marking. In the example above, most
time is spent waiting for the user in routine F.TrackCaret.

DEFINITION TextFrames;
IMPORT Objects, Input, Frames, Viewers, Looks, Texts;

CONST
(xParc.optsx)
gridAd) = 0; leftAd] = 1; rightAd) = 2; pageBreak = 3; twoColumns = 4;
(%Frame.optsx)
scrollOpt = 0; fontOpt = 1; showParcsOpt = 2; changeMarkOpt = 3;
flexWidthOpt = 4;
(%SelectionMsg.idx)
getsel = 0; setsel =1;

TYPE
Context = RECORD (Objects.ObjectDesc)
(xblock of parameters repeatedly passed to elementsx)
attr: Texts.Attributes; pos: LONGINT; x0, yO, indent: LONGINT
END;

Elem = POINTER TO ElemDesc;
ElemDesc = RECORD (Texts,ElemDesc)
PROCEDURE (E: Elem) PrepareDisplay (VAR con: Context);
PROCEDURE (E: Elem) Display
(VAR f: FrameDesc; VAR con: Context; VAR eFrame: Viewers.Frame);
(sby returning eFrame + NIL, element E may install a subframex)

174

PROCEDURE (E: Elem) Edit
(VAR f: FrameDesc; VAR con: Context; VAR x, y: LONGINT; VAR keysum;: SET);
PROCEDURE (E: Elem) Focus
(VAR f: FrameDesc; VAR con: Context; eFrame: Viewers.Frame);
(xuser focussed subframe eFrame of E for editingx)
PROCEDURE (E: Elem) Defocus
(VAR f: FrameDesc; VAR con: Context; eFrame: Viewers.Frame);
(user defocussed subframe eFrame of Ex)
END;

Parc = POINTER TO ParcDesc;

ParcDesc = RECORD (ElemDesc)
first, left, width, lead, Isp, dsr: LONGINT;
opts: SET; nofTabs: INTEGER;
tab: ARRAY 32 OF LONGINT

END;

Location = POINTER TO LocationDesc;
LocationDesc = RECORD (Objects.ObjectDesc)
(%a location in model space and its related position in view spacex)
org, pos: LONGINT; x, y, dx, dy: LONGINT (xorigin org of line containing posx)
END;

Controller = POINTER TO ControllerDesc;
ControllerDesc = RECORD (Objects.ObjectDesc)
PROCEDURE (C: Controller) ConnectTo (VAR f: FrameDesc);
PROCEDURE (C: Controller) TrackLine
(VAR f: FrameDesc;
VAR %, y: LONGINT; VAR org: LONGINT; VAR keysum: SET);
PROCEDURE (C: Controller) TrackWord
(VAR f: FrameDesc;
VAR x, y: LONGINT; VAR pos: LONGINT; VAR keysum: SET);
PROCEDURE (C: Controller) TrackCaret
(VAR f: FrameDesc; VAR x, y: LONGINT; VAR keysum: SET);
PROCEDURE (C: Controller) TrackSelection)
(VAR f: FrameDesc; VAR x, y: LONGINT; VAR keysum: SET);
PROCEDURE (C: Controller) Calt
(VAR f: FrameDesc; pos: LONGINT; new: BOOLEAN);
PROCEDURE (C: Controller) Write
(VAR f: FrameDesc; ch: CHAR: VAR attr: Texts.AttributesDesc);
PROCEDURE (C: Controller) EditElem
(VAR f: FrameDesc; VAR x, y: LONGINT; VAR keysum: SET);
PROCEDURE (C: Controller) Edit
(VAR f: FrameDesc; x, y: LONGINT; keysum: SET);
END;

175

Frame = POINTER TO FrameDesc;
FrameDesc = RECORD (Looks.ContentsDesc)
text—: Texts.Text; org—~: LONGINT; opts—: SET;
focus—: Viewers.Frame; controller—: Controller;
hasCar-, hasSel-: BOOLEAN; carloc, selBeg, selEnd: Location;
defParc: Parc; time: LONGINT;
PROCEDURE (VAR F: FrameDesc) InstallController (c: Controller);
PROCEDURE (VAR F: FrameDesc) Init (t: Texts.Text; org: LONGINT; opts: SET);

PROCEDURE (VAR F: FrameDesc) ThisPos (x, y: LONGINT): LONGINT;
PROCEDURE (VAR F: FrameDesc) ThisSubFrame

(x, y: LONGINT): Viewers.Frame;
PROCEDURE (VAR F: FrameDesc) PassSubFocus (f: Viewers.Frame);
PROCEDURE (VAR F: FrameDesc) RemoveSelection;
PROCEDURE (VAR F: FrameDesc) SetSelection (beg, end: LONGINT);
PROCEDURE (VAR F: FrameDesc) RemoveCaret;
PROCEDURE (VAR F: FrameDesc) SetCaret (pos: LONGINT);

PROCEDURE (VAR F: FrameDesc) ParcBefore

(pos: LONGINT; VAR parc: Parc; VAR pbeg: LONGINT);
PROCEDURE (VAR F: FrameDesc) LineOrg

(text: Texts.Text; pos: LONGINT; VAR org: LONGINT);
PROCEDURE (VAR F: FrameDesc) ParagraphOrg

(text: Texts.Text; pos: LONGINT; VAR org: LONGINT);

PROCEDURE (VAR F: FrameDesc) ShowFrom (pos: LONGINT);
PROCEDURE (VAR F: FrameDesc) Update (VAR misg: Texts.NotifyMsg);

PROCEDURE (VAR F: FrameDesc) TrackLine

(VAR X, y: LONGINT; VAR org: LONGINT; VAR keysum: SET);
PROCEDURE (VAR F: FrameDesc) Trackword

(VAR X, y: LONGINT; VAR pos: LONGINT; VAR keysum: SET);
PROCEDURE (VAR F: FrameDesc) TrackCaret

(VAR x, y: LONGINT; VAR keysum: SET);
PROCEDURE (VAR F: FrameDesc) TrackSelection

{VAR x, y: LONGINT; VAR keysum: SET);

PROCEDURE {VAR F: FrameDesc) Call (pos: LONGINT; new: BOOLEAN);
PROCEDURE (VAR F: FrameDesc) Write

(ch: CHAR; VAR attr: Texts.AttributesDesc);
PROCEDURE (VAR F: FrameDesc) WriteElem

(e: Texts.Elem; VAR attr: Texts.AttributesDesc);

PROCEDURE (VAR F: FrameDesc) EditElem
(VAR x, y: LONGINT; VAR keysum: SET);
PROCEDURE (VAR F: FrameDesc) Edit (x, y: LONGINT; keysum: SET);
END;

176

Directory = POINTER TO DirectoryDesc;
DirectoryDesc = RECORD (Objects.ObjectDesc)
tickW, barw, left, right, bottom, top: LONGINT;
altLeft, altRight, altBottom, altTop: LONGINT;
frmOpts, scrlOpts: SET;
PROCEDURE (D: Directory) New (t: Texts.Text; org: LONGINT; opts: SET): Frame;
PROCEDURE (D: Directory) NewFramed
(t: Texts. Text; org: LONGINT): Viewers.Frame;
PROCEDURE (D: Directory) NewScrollable
(t: Texts.Text; org: LONGINT): Looks.Scrollable;
PROCEDURE (D: Directory) NewMenu
(name, menu: ARRAY OF CHAR): Texts, Text;
END;

SelectionMsg = RECORD (Objects.NotifyMsg)
(xget, set selection text[beg, end), get valid if time = Ox)
id: INTEGER; text: Texts.Text; beg, end, time: LONGINT
END;
CopyOverMsg = RECORD (Objects.NotifyMsg)
(ask receiver to copy over text[beg, end) to its caret positionx)
text: Texts.Text; beg, end: LONGINT
END;
ExtendMsg = RECORD (Objects.NotifyMsg)

(%look for an extension frame candidate to extend selection over frame boundariesx)
src, ext: Frame
END;

VAR
dir, stdDir—: Directory;
defParc: Parc;

PROCEDURE GetSelection (VAR text: Texts.Text; VAR beg, end, time: LONGINT);
PROCEDURE SetSelection (text: Texts.Text; beg, end: LONGINT);
PRQCEDURE SetDirDefaults;

END TextFrames.

An interesting detail is the capability of TextFrames to set selections in all
views displaying a certain text. This can be used to implement simple
feedback mechanisms for operations modifying parts of a text.

The implementation of standard parcs is contained in the separate module
ParcElems listed below. ParcElems also extends the type defined in
TextFrames by adding methods to set and get the attributes of a parc. These

methods are designed to be extensible such that extended parcs may add
new attributes.

177

DEFINITION ParcElems;
IMPORT Objects, Input, Frames, Viewers, Texts, TextFrames;

TYPE
Parc = POINTER TO ParcDesc;
ParcDesc = RECORD (TextFrames.ParcDesc)
PROCEDURE (P: Parc} SetAttr
(VAR f: TextFrames.FrameDesc; pos: LONGINT; VAR, s: Texts.Rider);
(xscan attribute settings using s; produce log output using rx)
PROCEDURE (P: Parc) GetAtir
(VAR f: TextFrames.FrameDesc; VAR t, s: Texts.Rider);
(xscan attribute requirements using s; produce output using rx)
END;

PROCEDURE ParcExtent (i: Texts.Text; beg: LONGINT): LONGINT;
END ParcElems.

349 System Configuration and The Bootstrap Process

The potential of the Ethos system is based to a large extent on its ability to be
configured on all levels. The ubiquitous approach taken is that of replacable
default objects. Default objects are often directory objects that deliver objects
of a certain type. Of course, a configuration should be automatically
re-established whenever booting the system. To avoid introducing some kind
of control language, a special module Config is used: During the boot-strap
process (cf. below), Config gets control and establishes the wished
configuration.

Often it is required to construct a configuration by using a certain extension
to handle special cases, while another (or the default) should handle all other
cases. A typical approach to this problem is what might be termed the
"piggy-back” style of programming: All functions are implemented as an open
list of handlers, perhaps even with priorities. The resulting configuration
depends on the order of handler invocations which is not explicit. Also, in
general, the automatic chaining of handlers is not flexible enough. Instead,
each handler should have a single hook used to refer to a default handler.
Then it is under control of that handler when it hands over to the default.
Module Config is then used to construct explicit chains of extensions, where
this is required. The following example lists an almost minimal module
Config, leading to a standard configuration with a module Busy installed. The
only other thing that Initial does is loading module System and causing a
default viewer setting to be opened.

Procedure Initial is known by name to module Ethos. Invoking Initial as a
command allows to re-establish the initial configuration as long as correct

178

command invocation is still possible. This is quite helpful when
experimenting with new configurations. (To be complete, Initial should invoke
all SetDefault procedures of modules where the configuration has been
changed.)

MODULE Config;
IMPORT Ethos;

PROCEDURE Initialx;
VAR res: INTEGER;

BEGIN
Ethos.Call("System.DefaultViewers", NIL, FALSE, res);
Ethos.Call("Busy.Start", NIL, FALSE, res)

END Initial;

END Config.

Bootstrap.

Booting the Ethos system happens in a series of stages. The idea behind
introducing stages is an increase in flexibility: Each boot-stage needs a certain
burned-in knowledge about the next higher boot-stage. The finer grained the
boot-stages are, the less knowledge needs to be burned into the low stages.
The following list describes the actions performed during each of the stages.
After boot-stage 1 the module loader is present and initialized. Thus, all higher
boot-stages are simple and essentially ask the loader to install some higher
module known only by name at that stage.

» BootStage 0. A mechanism outside of Ethos loads modules Devices,
Objects, Files, and Modules. Usually, these four modules are prelinked
into a special bootfile. Afterwards, control passes to a special entry of
the first module, i.e. the low-level module Devices.

« BootStage 1. Module Devices initializes the four initial modules in the
mentioned order. Devices contains a mechanism that performs an
up-call to an installed main procedure whenever the system starts or
restarts. As part of its initialization actions, Modules installs a first main
procedure. After initializing all four modules, Devices starts the system,
i.e. calls the installed main procedure.

« BootStage 2. Module Modules gets control. Modules is the standard
module loader and hence is now able to load and initialize arbitrary
modules. Modules loads module Ethos. Ethos is the central scheduling
instance for all user interactions: It contains the main loop. As part of
its initialization Ethos installs a main procedure and returns.

179

BootStage 3. Module Ethos gets control. Ethos installs a new main
procedure, the main loop, and uses Modules to load module Config. (If
loading of Config fails, Ethos loads module System directly and
establishes the minimal startup configuration.)

Boot:-Stage 4. Module Config gets control. The purpose of Config (which
is available in source form to every user) is to establish an initial
configuration. Usually, Config loads module System and invokes a
command System.DefaultViewers to open a startup set of viewers
available to the user after the system has booted. Also, Config may load
any number of other modules required to establish the startup
configuration.

Boot:Stage 5. Unless Config caused another main procedure to be
installed, control is passed to the main loop in module Ethos. The
system is now up and running, awaiting user input.

At first glance it is not clear why a module first installs a main procedure, then returns
to Devices, only to immediately get control again. The reason is robustness. If the
initialization of a higher boot-stage module terminates exceptionally, the system falls
back into module Devices, removing all modules foaded during the current loader
invocation (cf. 3.4.3.1). Since each boot-stage completes by returning to Devices, an
exception leaves the so far established system intact. This is used to fall back to a
standard configuration when the user defined configuration is inconsistent.

180

3.5 Examples of Extending Ethos

A quick recapitulation of the Ethos extension model follows, for a full
discussion cf. Section 2.4.4. The guiding principle is to avoid extension of
concrete classes [JF88]. In general, if a class should be based on the
implementation of an existing concrete class, this is done by means of
forwarding. The more straight-forward approach of using method overriding in
conjunction with supercalls has many disadvantages. While it seems to
improve code re-use, this misses the point [Mag91]. It is felt that the far more
important effect of code re-use is that of re-use of client code: The dynamic
binding of methods makes it possible to implement clientcode that works
generically on all sorts of implementations of a certain abstract class.

Using direct inheritance to extend a concrete class abolishes part of a
system’s extensibility. For example, one might introduce an extension of text
frames that is a significant improvement over the standard implementation.
Then one installs a directory object returning these new text frames. This
should have an immediate effect on all applications that thereafter use the
directory object to get a text frame. However, if an application uses a concrete
text frame implementation as a basis for an extension, this application will
not profit from the new text frame implementation. Instead, one has to
replace the extended implementation.

The method put forward in Ethos to minimize extension of concrete
classes leads to a demand for an easy delegation construct. The proposed
forwarding technique uses a record field to refer to an object of the class
methods should be forwarded to. An abstract nutshell class can be provided,
where a nutshell class implements all methods such that invocations are
forwarded to an instance variable. Such a nut-shell class can be used to
minimize the coding-effort when implementing concrete forwarding classes.
The arising problem are self-invocations: If the object forwarded to performs a
recursive invocation of one of its own methods, this cannot be intercepted by
the forwarding object. The more general concept that can be used to solve
such problems is called delegation: Other than with forwarding,
self-invocations return control from the delegatee to the delegator. (For a
definition of delegation as opposed to forwarding, cf. 1.1.1 or [JZ91]).
However, a clean use of delegation requires language support not present in
Oberon-2 (cf. 4.4).

This section discusses a wide variety of extensions of the Ethos system. Some
of the extensions have been implemented to validate the extension model
and the interface definitions. However, often an extension is supposed to
closely follow the pattern of an existing part of the system. Then, for the sake
of total project time, the extension is only discussed but has not been carried

181

through to its very end.

351 An Alternate File Directory Model

Typical directory objects in Ethos are file directories. Whenever an old file is to
be retrieved or a new file to be generated, a file directory object is consulted.
The standard directory object maintains a single, flat name space on a single
device (the boot disk). However, the constraints to having a flat directory or to
supporting just one device are not built into Ethos, but are mere restrictions of
the standard implementation.

This section covers two extensions of the file directory: A hierarchical name
space and installable file-systems. To make things more interesting, the
implemented service follows the "no new languages” paradigm. Instead of
having a language (or an interactive facility) to define hierarchical directories
and to mount file systems, Oberon-2 is used to set-up the wished
configuration. (Of course, in practice one could easily add some interactive
facility dealing with the same programming interface.)

Introducing a non-flat name space seems simple at first hand. Indeed, it is
simple to replace the flat name space by a hierarchical one. The problems wait
at a different end: When introducing a hierarchical name space one also has
to introduce a "current directory”, such that applications not aware of the
hierarchy will function in a meaningful way. Also, one has to introduce a list
of search-paths, such that the system will find certain files, independent of
their placement in the hierarchy. The latter point can be illustrated by
considering that Ethos is based on dynamic module loading. Hence, it is
important that object files are found even if they are not located in the current
directory. However, forcing all object files into a single, known place renders
the hierarchical name space useless (simple prefixing conventions would do
then). For example, one might want to maintain two different versions of a
system. Then it is important that the same module exists in two different
sub-directories and that it is easy to select which one to inspect when this
module is sought.

Besides modules, there are many other objects that depend on availability
of files. For example, the font directory object seeks for pre-rastered fonts and
the text directory object seeks for existing texts. Hence, having a single
"current search path® will not do. Also, it is desirable to scan multiple
search-paths in a certain known order. Then it is possible to create a new
version of something by copying it to a search-path searched before the one
leading to the old version. If the new version shall be dropped for some
reason, it suffices to delete it: The old version will again be visible.

182

The implementation of a hierarchical name space pursued in this section is
based on a new directory type derived from the directory type defined in
module Files. Such a directory contains a list of sub-directories and a reference
to a host directory. The sub-directories are used to form the hierarchy, while
the host directories are used to access actual file-systems. Figure 3.31
illustrates the situation: Directory d has sub-directories d0, d1, and d2;
directory d1 has sub-directories d10 and d77; all directories share a common
host directory.

do

Lo e
AN
0 1 d11]

d1

y

host

Figure 3.31 — A Tree of Directories mounted to a Single Host Directory.

Hierarchical names are resolved by matching certain patterns within file
names (see below) and forwarding the request to the appropriate
sub-directory. Once a name has native form, i.e. does not denote a path
leading to one of the sub-directories, it is forwarded to the host directory.
Hence it is possible to resolve to final names on every level of the directory
tree.

To fully utilize a hierarchical name space it is useful to introduce some
naming conventions such that native, absolute, and relative naming of files are
possible. Native naming means that the file name should be taken as is and
used to access the host directory. Relative naming means relative to some
path prefix that is set for a particular directory. Path prefixes are used to create
search paths when retrieving existing files, or to place new files using some
"current” prefix. The following simple naming conventions have been chosen,
where relative and absolute paths follow the conventions of UNIX:

/dg/dq /... fdp/name absolute path
di/djq/... /dp/name relative path
%name native path

183

The "%"-prefix for a native path is required to disambiguate it from a relative
path having no directory prefixes (ie. "di/di;4/.. /dy/name" degenerates to
“name"). This is useful if the host directory again uses structured file names,
e.g. to allow for path names like "/dgg/dgs%/d4g/d14/name’.

When a directory request to a directory d has the absolute form "/dg/dy/...
/dn/name’, "/d0" is removed and the request forwarded to the sub-directory
do of d. A request to d based on a native name is directly forwarded to d's
host directory. The treatment of relative names depends on the directoty
operation performed. If an existing file is sought, a directory uses a list of
search prefixes (called the directory's context prefixes) to expand the relative
name. If a new file is to be registered, a different prefix (called the directory's
cutrent prefix) is used for expansion. Finally, absolute names of the form
"/name"” are expanded using a directory specific prefix (called the directory's
prefix) and forwarded to the host directory. Expanding a path-name means
prefixing it with some other partial path-name.

in a common set-up the hierarchy of directories is established by the
configuration module. The only interactive operation usually applied is the
modification of the current prefix of the top-level directory. (The operation of
changing this prefix may be compared to the UNIX cd shell command.) All
operations of a hierarchical directory are based on string manipulation of path
names and request forwarding to either other hierarchical directories or to
host directories. This makes the hierarchical directory extension flexible. For
example, using different host directories for different sub-directories of a
directory tree enables the support of mulitiple file-systems. In fact, adding a
new sub-directory with some file-system's directory installed as its host is all
that need be done to "mount’ a file-system. Unmounting the file system is
then simply done by removing the sub-directory again. An example for the
usage of an alternate host directory is given in the next section.

One of the hazards of unmounting file-systems in traditional systems is the possibility
that references to files of that file-system are still active. In the model proposed in this
section this is not a problem. The unmount process described above simply removes
the file-system from the active name space. Thereafter it is no longer possible to retrieve
files from or allocate files in that file-system. A physical removal of the file-system is also
possible, but requires more care: Since files are selfcontained objects they exist until
finalization. The finalization of the last open file of a file-system can then be used to
safely remove the file-system itself. Also, the list of opened files is available through the
file-system's identity directory. Hence it is also possible to explicitly flush and invalidate
all existing file references. Then the file-system can be removed immediately.

The definition of directories is not restricted to tree-like structures. In general,
any directed graph is possible. For example, if d1 is a sub-directory of d it is
well possible that d is again one of the sub-directories of d1. Also, d1 may be
one of its own sub-directories. Using such network relations among
directories can be quite convenient to ease navigation in a larger directory

184

structure. (In UNIX, ' and '.." paths refer to the current and the current's father
directory, respectively. This is just a special case of cyclic sub-directory
relations.)

Module Directories implements the hierarchical naming strategies explained
above. Its interface is shown below. The context prefix list has been
implemented as an open array of names (context) that is increased by
doubling its length each time all entries have been used up. It may be
interesting to note that the complete implementation takes only about 200
lines of code.

DEFINITION Directories;
IMPORT Files;

CONST
(%DirNotifyMsg.opx)
init=10; setCurrent=11;
addContext = 12; removeContext=13;
installDir = 14; removeDir =15;

TYPE
" Contexis = POINTER TO ARRAY OF Files.PathName;

Directoty = POINTER TO DirectoryDesc;
Dirlnfo = POINTER TO DirlnfoDesc;
DirinfoDesc = RECORD (Objects.ObjectDesc)
next: Dirinfo;
dirname: Files.PathName; -
dir: Directory;
END;

DirectoryDesc = RECORD (Files.DirectoryDesc)
nofCon—: INTEGER; context-: Contexts;
current-: Files.PathName; prefix—: Files.PathName;
host—: Files.Directory;
PROCEDURE (D: Directory) Init (prefix: ARRAY OF CHAR; host: Files.Directory);
PROCEDURE (D: Directory) SetCurrent (path: ARRAY OF CHAR);
PROCEDURE (D: Directory) AddContext (context: ARRAY OF CHAR);
PROCEDURE (D: Directory) RemoveContext (context: ARRAY OF CHARY);
PROCEDURE (D: Directory) InstallSubDir

(dirname: ARRAY OF CHAR,; dir: Directory);

PROCEDURE (D: Directory) ThisSubDir (dirname: ARRAY OF CHAR): Directory;
PROCEDURE (D: Directory) RemoveSubDir (dirname: ARRAY OF CHARY);
PROCEDURE (D: Directory) GetSubDirs (prefix: ARRAY OF CHAR): Dirlnfo;

END;

END Directories.

185

The possibility to remove context prefixes and sub-directories is usually not
used. Instead, the whole directory structure is constructed at once using some
Oberon-2 code typically found in module Config. Having the inverse
operations of adding a new context prefix and installing a new sub-directory is
useful, though. For example, one might add an interactive interface that
allows for direct graphical manipulation of the directory structure. To support
such applications, Directory extends the DirNotifyMsg defined in Files such
that all new directory operations cause proper notifications.

35.2 A Simple Remote File System

The discussion of flexible directory schemes (previous section) already
indicated the possibility of having multiple file-systems available at any one
time. Figure 3.32 illustrates a simple setup, where a common main directory
contains a sub-directoty. These directories refer to two different host
directories. A simple example using such a topology is a diskette file system
temporarily mounted into the main directory structure. In turn, files on the
diskette can be maintained and accessed just as usual files on the disk. (On
many machines one has to take care of the possibility of diskettes being
removed by the user at any one time.)

do

. ,

disk A disk B

Figure 3.32 - Mounting a Second Disk Using a Subdirectory.

Since host directories are treated like standard file directories, they can again
handle structuring conventions. For example, disk 8 might hold a Macintosh
file system, where hierarchical naming is usually indicated by means of the
separator " (instead of "/). Then the path name "/d/d0/a:b:c" refers to the
Macintosh path "a:b:c”. Of course, using the prefix scheme explained in the
previous section one could easily have multiple directories pointing to the
same host directory, but referring to different folders within that host directory.
This way it is possible to create a homogeneous naming scheme covering a
variety of underlying host naming schemes. In the example, the Macintosh
naming conventions would become invisible and the file “c” could be reached
by using the path "/d/d0/a/b/c".

186

More interesting than the support of additional disks is the support of
file-systems of a totally different nature. As an example, a simple remote
filesystem is studied. To avoid the subtleties of consistent updates the
implementation is based on a trivial copy/copy-back scheme: If a remote file
gets requested a copy is sent over the network. Whenever a remote file is
flushed or registered it gets sent back. If concurrent copy-backs happen, there
is no guarantee on the order of updates, except that a copy-back will either
win, or lose completely, i.e. the surviving update is consistent.

A remote directory is created upon request by a special directory object of
module RemoteFiles. Method This takes a remote address as its parameter
and tries to establish a network connection. If this is done successfully, a
file-directory object is retumed that gives access to files on the remote
machine. As at the time of completion of this thesis the network support for
Ethos was not yet completed, RemoteFiles has not yet been worked out
completely. The definition below serves as an illustration.

DEFINITION RemoteFiles;
IMPORT Objects, Files, NetLink;

TYPE
Directory = POINTER TO DirectoryDesc;
DirectoryDesc = RECORD (Objects.ObjectDesc)
res: INTEGER;
PROCEDURE (D: Directory) This (site: NetLink.SocketAdr): Files.Directory;
END;

VAR
dir, stdDir—: Directory;
END RemoteFiles.

As another interesting application, directory objects may be used to
implement semantic file systems as suggested in [GJS91]. The idea is to allow
certain contents-related queries for files, where virtual directory names are used
to achieve compatibility with existing directories. As Ethos directory objects
have full control over the evaluation of search strings when retrieving files,
semantic file systems should be straight-forward to integrate into Ethos.

3,53 Adding Threads

Many modern operating system introduce threads (cf. section 3.4.4) as the
most fundamental concept of multi-programming. However, it has been
obsetved before (e.g. [Wir771), that co-routines are a much more fundamental
construct that can be used to create thread-supporting libraries. In fact,
threads can be seen as "co-routines plus pre-emption”.

187

In Ethos, not even co-routines have been made available on a low level.
(This has been done for the same reasons as in Oberon: Multi-programming
on single-user machines introduces far more problems than it solves) Yet
there are examples where a functional thread package would be helpful. The
most important area are services offered to other machines over some
network. There is no direct way to detect that a remote machine has crashed.
Hence, timeouts are used to guarantee termination of functions waiting for a
remote reply. However, if a machine has no thread-concept, it becomes hard
to guarantee that the machine will reply within some bounded time (e.g.
[Szy90a]). If such a guarantee cannot be made (with some acceptable
probability), the use of timeouts becomes questionable: For a remote
machine there is no way to distinguish between a machine that is busy for a
long time and one that has crashed.

In Ethos all provisions have been taken to allow introduction of co-routines.
Since a co-routine has as its essential structure a private stack, it must be
possible to announce the existence of such a stack to the garbage collector.
This can be done by registering the stack as a reference-block (cf. section
3.4.4). The garbage collector (cf. section 3.4.2) treats reference-blocks as arrays
of potential pointers. Each of these potential pointers is checked for
plausibility and then verified against the actual heap-structure. Surviving
pointer candidates are traced to mark the then potentially reachable objects.
This is just the technique used by the garbage collector to trace references
contained in the standard stacks, e.g. the user and supervisor stacks.

The only other hurdle when implementing co-routines as an "after-thought’,
i.e. when adding co-routines as an extension to the system, is the protection
against stack overflows. For the standard stacks provisions have been taken to
detect stack overflows. In principle, the processor should guard a stack against
overflows by means of a stackfence register. Second best, a memory
protection scheme, e.g. a memoty management unit, can be used. (The
Chameleon machine [HP92] has a simple page protection scheme that is
used for this purpose.) If no hardware support is available, the compiler could
issue stack check instructions — a relatively expensive thing to do. In any case,
if provisions for flexible stack-overflow detection are given, it is easy to
implement co-routines as an extension to Ethos.

Having co-routines, multi-programming based on cooperative scheduling is
possible. For the timing critical problems discussed above, this is hot enough,
though. Instead, a scheduler needs to be installed that performs pre-emptive
scheduling among a set of co-routines (then becoming threads). Such a
pre-emptive scheduler can be implemented by means of an engine provided
by module Tasks (cf. section 3.4.4).

Module Threads does just this; it introduces a new scheduler type, derived

188

from that defined in module Tasks. A task set-up to execute under such a
scheduler will be executed in a threaded fashion, pseudo-concurrently with
other threads, other engines, and the main system's thread. To make module
Threads a little bit more interesting, another module has been added that
implements signals (similar to those defined in [Wir841). Using the simple
monitor construct of module Tasks, it is easy to implement other
synchronization constructs, such as Semaphores [Dij65].

Note that the creation of new threads is done by merely setting a task
(derived from Tasks.Task) to a thread scheduler. The scheduler then creates a
new dispatcher and allocates resources (like the calling stack) for the thread.
Control is passed to the new thread by calling the Do method of the attached
task. (If Do ever retumns, the task is suspended.)

DEFINITION Threads;
IMPORT Tasks;

TYPE
Scheduler = POINTER TO SchedulerDesc;
SchedulerDesc = RECORD (Tasks.SchedulerDesc)
PROCEDURE (S: Scheduler) Pass;
END;

VAR sched, stdSched—: Tasks.Scheduler;

PROCEDURE SetDefaults;
END Threads.

DEFINITION Signals;
IMPORT objects, Tasks;

TYPE
Signal = POINTER TO SignalDesc;
SignalDesc = RECORD {(Objects.ObjectDesc)
PROCEDURE (S: Signal) Send;
PROCEDURE (S: Signal) Enqueue (t: Tasks.Task);
PROCEDURE (S: Signal) QueueLen (): INTEGER;
END;

Directory = POINTER TO DirectotyDesc;
DirectoryDesc = RECORD (Objects.ObjectDesc)

PROCEDURE (D: Directory) New (): Signal;
END;

VAR dir, stdDir—: Directory;

PROCEDURE SetDefaults;
END Signal,

The following example for creating and using threads
implementation of the Sleeping Barber algorithm.

IMPORT
Signals, Threads;

TYPE
Consumer = POINTER TO RECORD (Tasks.TaskDesc) END;
Producer = POINTER TO RECORD (Tasks.TaskDesc) END;

VAR
nonempty, nonfull: Signals.Signal;
in, out, n: INTEGER;
buf: ARRAY 100 OF CHAR;

PROCEDURE (C: Consumer) Do;
VAR base: Threads.Scheduler; dst: CHAR;
BEGIN base := C.base(Threads.Scheduler);
LOOP DEC(n); :
WHILE n < 0 DO nonempty.Enqueue(C) END;
dst := buflout]; (%consume dstx) out := (out + 1) MOD LEN(buf):
IF n = LEN(buf) THEN nonfull.Send END
END
END Do;

PROCEDURE (P: Producer) Do;
VAR in1: INTEGER; src: CHAR;
BEGIN
LOOP INC(n);
WHILE n > LEN(buf) DO nonfull.Enqueue(P) END;
(xproduce srcx) buf[in] := sr¢; in := (in + 1) MOD LEN(buf);
IF n =0 THEN nonempty.Send END
END
END Do;

PROCEDURE Kick;
VAR p: Producer; ¢: Consumer;

BEGIN n:=0; in :=0; out:=0;
nonempty := Signals.dir.New(}; nonfull := Signals.dir.New();
NEW(p); Threads.sched.SetTask(p, FALSE); p.Resume;
NEW(c); Threads.sched.SetTask(c, FALSE); c.Resume

END Kick;

shows

189

dan

The standard thread scheduler implemented in Threads follows a 50% heuristics: At
most 50% of the processor cycles are spent executing threads; while the rest is reserved
for the main thread. This ensures sufficient reactivity of interactive applications. Also,
the use of WHILE loops to establish conditions is necessary for two reasons. Firstly, the
implementation of Signals is simple-minded in that it does not seize the processor
when a thread calls Enqueue, but simply returns after ensuring that the thread is in the
queue of the corresponding signal. Secondly, the semantics of the implemented Send

190.

operation is that it does wake up the longest waiting thread, but that it does not affect
scheduling. Hence, live locks due to priority inversions are avoided, but there is no
guarantee that a resuming thread finds the condition that it was waiting for still
established.

354 Extending the Text Model

Module Texts, defining the standard text model, has been introduced in
section 3.4.6, The standard text model can be extended in several ways, e.g.
using

+ new element implementations
» new text attributes
+ overlayed structures maintained by text operations

The implementation of new elements is the easiest way. Adding a new
element does not interfere with any of the existing elements, and all elements
can be used in any combination to form a document. This is the
recommended way of extending the Ethos text model.

Introducing new attributes is more involved. It is necessary to implement a
new concrete text class that understands and maintains the new attributes.
Also, it is not possible to use two different attribute extensions in conjunction.
(This would lead to a multiple-inheritance problem to re-join the two separate
attribute record definitions.) Often it is better to introduce new attributes by
means of control elements. The paragraph controls defined in module
TextFrames (cf. section 3.4.8) are a good example. Then the convention is
applied that an attribute extends from a control element to the next of the
same kind. If no element controls a certain text stretch, a default value is
chosen.

More general than added attributes are overlayed structures. An overlayed
structure maintains some additional information relative to the edited text. For
example, such a structure may be used to implement a folding editor. The
overlayed structure then indicates beginning and ending positions of a text
fold. An extended editor then can "open” and ‘close’ such a fold, by
displaying or hiding it. Again, the Ethos text model allows for such extensions
but one must be aware that it is rather hard to recombine two different
extensions of that kind. As for attribute extensions it is preferable to use
special elements to solve the problem. For example, to implement folding one
can use pairs of fold-elements that delimit fold stretches.

191

More interesting extensions of the text model involve extensions of the
editing model. A standard text can be edited freely by means of arbitrary
insertions and deletions. However, it may be interesting to provide an
extended text implementation that defines some kind of protocol for
elements affected by editing operations. For example, one could allow
elements to prevent deletion, or to modify deletions to consistent ranges.
Then it is possible to have pairs of elements that cannot be deleted
individually. Also, it may be interesting to notify all elements in a text of all
changes applied to the text. This is useful when elements need to recalculate
their contents upon certain text changes. Finally, a text may be modelled as a
non-sequential structure, e.g. a network of linked text portions. Then, an
extension of the text model may support such non-linear structures and
provide a (modifyable) linear projection onto the structure. This may be used
to define repeatedly occuring text fragments only once, automatically
maintaining consistency when one of the exemplars is edited.

All these extensions tend to degrade performance of the text
implementation significantly. However, opening possibilities for experimenting
with clever implementations of such extensions is at the very heart of the
Ethos project.

As the Ethos text system was the seed for developing the Oberon Write
system [Szy92a], the extensions available for Write are considered shortly. For
a more detailed description of the extensions and their applications consult
the Write documentation (e.g. [Szy91]). The equivalent extensions are
expected to be easily applicable to Ethos. However, the large user base of
Oberon lead to far more useful extensions for Write than could be
re-implemented for Ethos in the course of this project.

355 Changing the User Interface Model

The standard user interface of Ethos is implemented in modules Viewers
(34.81) and Looks (3.4.8.3). Viewers defines the primary organization of
screen space using layouts, tracks, and viewers. Looks defines refinements of
the viewer concept and introduces a directory object. This directory object is
the anchor for changing the Ethos user interface.

On the one hand, the graphical looks may be changed. This is done by
re-implementing the Looks abstractions Viewer, Scroller, Scrollable, and the
like. On the other hand, the "feel” may be changed by interpreting mouse and
keyboad input in a different way. For the latter kind of modification, no
framework is present within Ethos. Indeed, the proper decoupling of user
interaction from program models is still an open research issue (e.g. [Mar91]).

192

3.5.6 Remote Pixelmaps — Printing

Pixelmaps have been introduced in 3.4.7.1 as the bottleneck interface to all
two-dimensional pisel-oriented devices. The bottleneck has been designed
with efficient decoupling of remote devices in mind. For example, it was
anticipated from the beginning that printing is merely drawing to a frame
connected to a pixelmap representing a printer. Whether this "printer” is
actually a virtual one mapped to a screen (previewing), a true local device, or a
remote printing service is fully transparent to the implementor and user of a
frame class.

Figure 3.33 illustrates the decoupling of a remote device using a pair of
special pixelmaps and frames. The idea is that an arbitrary client frame is
connected to a special pixelmap. The pixelmap in turh communicates with a
special frame, possibly located on a different machine. Finally, the special
frame is connected to the target pixelmap. As a result, the client frame seems
to operate directly on the target pixelmap. (This holds, as long as neither the
client frame, nor the target pixelmap use type tests to query the actual type of
the underlying pixelmap or the connected frame, respectively.)

arbitrary
client frame
r— T - - - - T = == = =
: special :
| port i
: sgecial bidirectional special |l
| pixelmap channel Jrame J

target port

1
arbitrary
target pixelmap

Figure 3.33 - Decoupling (Possibly Remote) Pixelmap Devices,

The bidirectional channel is used to transport coded requests and replies
corresponding to the operations of the pixelmap bottleneck interface. The
channel needs to be bidirectional, since pixelmaps offer quety functions, e.g.
used to map colors between universal and device-specific codes.

The decoupling toolkit consisting of the special frames and pixelmaps can
also be used to decouple parts coexisting on the same machine. For example,
a background thread (3.5.3) may produce results by drawing into an arbitrary
frame. Then, to avoid synchronization conflicts with the single-threaded user

193

interface of Ethos, an idle task (3.4.4) may be used to periodically update the
screen.

3.5.7 Adding a New Abstraction — Graphics

The only data model fully supported in the minimal Ethos configuration are
texts. However, adding a new data model to the system is rather easy. For
example, to add a graphics subsystem it is merely necessary to provide
modules Graphics, GraphicFrames, and Draft. These modules have similar
functionality as the ones of the text system (Texts, TextFrames, Write),

The implementation of a graphics subsystem for Ethos has almost been
completed, starting with the Draft editor for Oberon (by Robert Griesemer).

3.6 Porting Ethos

One of the earliest goals set when defining the Ethos project was portability.
From the experiences with the Oberon system it was clear that portability
needs to span both, source code and data files. The former to allow quick
ports to new machines, the latter to enable data exchange among versions
running on various machines. While the former goal was met quite well by
the Oberon system [BCFx92], the latter has been almost ignored when
designing Oberon.

3.6.1 What is Portable? What is Not?

In principle, porting Ethos means rewriting hardware-dependent parts. Most of
these are concentrated in the foundation modules Devices, Objects, Files, and
Modules. Module Devices needs be rewritten almost completely, while
modules Objects, Files, and Modules contain only few hardware-dependent
details. The loader in module Modules needs to be adapted if the target
machine has a different processor-architecture or if the used compiler
generates a different objectfile format. The remaining dependencies may be
found in the modules residing in the Device Abstraction Layer (cf. section
3,31) where default implementations of device drivers are located. This
includes modules Frames, Input, and NetLink. Again, these modules contain
clearly separated hardware-dependencies and are otherwise portable.

The interfaces of all modules have been carefully designed to avoid
hardware dependencies. This holds also (within limits) for the module
Devices at the bottom of the Ethos system. In other words, it should be

194

possible to rewrite Devices for other machines without changing its interface.
It is clear that such a goal is difficult to achieve and it must be admitted that
the expressed optimism is only supported by the study of a few contemporary
workstation architectures. However, while Devices is imported by some
modules in the Ethos system, it is never re-exported. Hence, changing its
interface is a mere matter of inconvenience but keeps higher-level interfaces
intact.

36.2 Effort Required when Porting Ethos

Ethos has been ported within five days to a DECstation running Ultrix (the
port requires further polishing though). The porting scheme applied follows
the one used for the Oberon system [BCFx92]. Major difficulties have not
been encountered for Ethos. A port to the Chameleon machine [HP92] is
planned, but has not reached a definite state. A port of the Oberon system to
Chameleon has been completed, and the low-level parts implemented to port
Oberon have already been designed with specific demands of the Ethos port
in mind.

3.63 Experiences with Porting Ethos to a New Machine

The abstractions provided by Ethos proved easily portable. A single minor
exception is the pattern pointer contained in the Frames.Pattern descriptor.
For a port to X-Windows this pointer has been replaced by a longint (pointing
to a C structure defined by X).

3.7 Histoty of the Ethos Project

Within the tight time-line of the Ethos project - less than two man-years -
strict planning of certain project phases was necessary. At the same time the
original project goals required as many decisions as possible to be left open
as long as possible. The resulting project phases can be seen as a mixture of
milestones and evolutionary refinements. Some of the strategies applied to
prototype the system from its earliest stages up to a version running on a bare
machine are interesting in themselves. Also, the process of tuming vague
ideas into trusted implementations is of some interest.

195

3.7.1 Phases of Project Evolution

The Ethos system has been developped in five major steps (often called
milestones), each being subdivided into many smaller refinement steps. The
major steps are characterized by a re-engineering of the whole system: Each
time the complete system was frozen in its current state, and development of
code started over again. Of course, whenever a design situation reoccured that
was found to be solved by implementations of an earier step, source code
was carefully copied, instead of being rewritten. The following graphics shows
the modules involved in each of the first four major steps; the modules that
resulted from the fifth and (so far) last step have been described at length in
subsection 3.3.1.

Figure 3.34 - Fthos Evolution: Bootstrapping from Oberon.

196

Figure 3.35 ~ Ethos Evolution: Self-contained system.

The first two versions were built on top of the Oberon system. For this
purpese, the Oberon system can be divided into two parts: One part - the
Oberon core - contains hard-wired abstractions like the memory
management, the file system, and the module loader. The other part, forming
the majority of the Oberon system, contains replaceable and (to some extent)
extensible abstractions, like application specific models, views, and command
packages.

To prototype early versions of Ethos, the Oberon core was maintained,
while replacing everything on top. This was done by stepwise reducing the
dependency on Oberon modules. During these steps, the requirements for the
lower parts became more precise, and in the fourth step the Oberon system
was completely replaced by low-level Ethos modules. The third step led to the
first bootable, but minimal version of Ethos. This required implementing a
tool to make boot files, called EthosBuilder and executing under Oberon (cf.
3.7.2 below).

Re-introducing the higher-level parts of the second step into the bootable
version led to step four. Finally, all the lessons learned while engineering this
version were used to improve some of the design principles and to redesign
the entire system following the improved principles.

197

3.7.2 Bootstrapping the System on a Bare Machine

The boot mechanism of Ethos on a bare machine has been described at
length in subsection 3.4.9. The important point is that the boot strap starts by
loading a file of fixed and simple format from an disk or diskette into the
main memory. This is done by a small boot loader program bumed into a
read-only memoty (ROM) of the machine. The ROM has not been changed
over the one used to boot Oberon. Hence, the same boot file format was
used, and Oberon and Ethos could be booted interchangably on the same
machine. :

The boot file consists of a sequence of blocks, each prefixed by an absolute
memory address. The boot loader copies each of the blocks to the given
absolute address. Finally, the boot file contains an entry point - again an
absolute address — that is used by the boot loader to jump to the loaded
program.

BootFile = {Address Length {byte} engr} StartAddress O.

To construct a boot file the tool EthosBuilder is used. EthosBuilder takes a
sequence of object file names, reads each of these files and creates a boot file.

After each major change to the system, EthosBuilder was used to assemble
a self-contained boot file containing scaffolded modules. Then, by testing and
accepting modules from the bottom individually, a running system was
re-established. It is important that EthosBuilder can combine any number of
modules into a boot file. Hence, it is easy to test components like the file
system or the module loader, since they need not function just to have testing
madules available.

In an early step the Devices module was designed and implemented. Its most
essential features were tested by directly writing test patterns to the
bitmapped display. As soon as these were up and running, minimal input and
output primitives were implemented to support test scaffolding of other
modules. Already in an early version simple support for character output to
the display was provided. This was used to produce readable traces of the
stack and processor state after catching hardware exceptions (traps). It was
crucial to have readable and informative output in early stages to avoid the
burden of "low-level debugging” whenever possible.

it may be noteworthy that the garbage collector was not installed until after
most of the system was completed. Instead, an early version of the collector
was implemented and tested within the running Oberon system. It was found
that for a garbage collector there are mainly two possibilities: Either it runs

198

perfectly, or it is quite easy to cause some significant defect in the running
system. This is only true, if the system has reached sufficient complexity to
produce a complete set of test cases. Hence, it was easy to test the garbage
collector by installing an almost correct version into the otherwise complete
system.

Testing the garbage collector took about two days. Almost all the time was spent -
searching for a mysterious error that caused collection of objects that were stilf
reachable from the stack, but not otherwise. To trace pointers in the stack (cf.
subsection 3.4.2), all values that look like heap references are sorted into an array.
Then, this array is compared against all allocated blocks, marking biocks that are
reachable from the stack.

Finally, the error was located in a Heapsort procedure that was copied from another
program, implemented by someone else. While this sorting procedure was about the
only part of the collector that was trusted, it was also the only part that contained a
significant error!

3.7.3 Acquiring Confidence into New Implementations

While it is obvious that one has to acquire confidence into a new
implementation, the methods used to achieve that goal are often left
unmentioned. The scientifically rather weak field of "Software Engineering” led
to the impression that these methods are imprecise, repetitions of common
knowledge, or the like. However, it is felt that the importance of the topic
legitimates a short discussion. In this section it is tried to cover some of the
important points in a rather general setting. The discussion may be seen as a
closing remark on the Ethos project.

There is one guiding principle of utmost importance:
Have a single bug at a time.

In other words, it is important to gain confidence in small steps. This is by no
means a new rule, but the one that is most often violated. The combinatorial
difficulties of a system can only be mastered when the components seen
individually are trustworthy. If one follows the rule thoroughly the location of
errors is almost always clear, i.e. in the moment an error gets detected its
cause is likely to be found within a small part of the whole system.

In order to trust individual subsystems two things need to be done. Firstly,
it must be clear what the subsystem ‘is supposed to do, i.e. some kind of
specification is required. Secondly, the actual implementation must be
validated for actually implementing the specification. In principle, a formal
specification and a formal proof would do the job best. This is at least true for

199

small subsystems with tricky semantics.

For larger systems with modest complexity the formal approach often leads
to specifications longer than the actual implementations. Also, there is no
general way of completely validating a program: For example, the equivalence
of a program and its formally proven counterpart is undecidable in the general
case. A method to attack this problem is the hand-in-hand development of a
program and its proof [Dij65][Dij76]{DS90]. For delicate parts of programs,
such as subtle algorithms applied to a certain data structure, this can be
regarded part of the state-of-the-art.

The covered area is often referred to as "programming in the small’,
compared to "programming in the large”, where the requirement is added to
abstract sub-systems into compact units of reasoning. In the area of side-effect
free languages (e.g. functional languages) this has been achieved. In
languages based on the imperative paradigm, including most existing
object-oriented languages, no sufficiently mighty methods exist. At the heart
of the problem is the concept of procedural abstraction: A procedure - other
than a function - leaves side-effects in the global state. For "pure”
object-oriented languages the global state is clearly separated into objects,
enabling a better control over side-effects. The same is true for modularized
systems, though. Still, the change of global state /s visible to other objects and
thus the underlying paradigm remains imperative.

Besides formal specification a weaker tool exists: A sufficiently powerful
type-system. The typing information added to a program can be seen as a
subset of a formal specification. Constraints enforced by the type system are
predicated over the identifiers used in the various signatures. A well typed
program carries a large part of its specification in-place, i.e. closely related to
the program code. It is important to have a sound type-system, i.e. one where
the predicates implied by assigning certain signatures to components are
guaranteed by a combination of compile-time and run-time checking. Also, all
predicates implied by the type-system should be decidable. Having a well
typed program based on a sound and sufficiently strong but still decidable
type-system allows the compiler to validate the part of the program specified
by the typing information!
A general warning may be In order at this place: Many existing languages add type
information that is not sound, not decidable, or simply not completely checked.
Examples are covariance problems in Eiffel [Mey88] or unsafe pointer arithmetic in C
[KR78]. For such languages, the type-system adds the iflusion of having a compiler
checking part of a program's correctness, while this is actually not done or even

impossible. 1t is doubtful whether such typing information is better than no type
information at ail,

200

Obviously, a type system has its limits. In theory, the limits are reached at the
point of undecidability. In practice, they are reached far earlier, as a type
system must remain masterable by the programmer. Of course, the constructs
of a type system should be orthogonal. (The existence of separate record and
class constructs in many object-oriented languages is a clear violation of this
principle.) Designing a good type-system is a trade-off between expressiveness
(what can be specified?) and conciseness (how many separate type concepts
exist?). Hence, the most important question to be asked is: Is the set of
expressible predicates worth adding another type concept? There is no easy
answer to this question, and the evolution of typed language families exhibits
a constant addition and removal of type features. For example, the languages
ALGOL 60 [Nau60], EULER [Wir63], SIMULA [DN66], SIMULA 67 [DMN68],
ALGOL 68 [WMPx69], PASCAL [Wir71], Modula [Wir77], Ada [DoD80],
Modula-2 [Wir82], Oberon [Wir88b], and Modula-3 [Nel91] reveal the
interesting play of forces between opposing answers to the before mentioned
design question.

Run-time checks should be added by the language compiler wherever the
static checking does not suffice to guarantee certain properties. Of course,
runtime checks cannot guarantee that a program is correct, but they can
guarantee that it is safe. Safe means that the program cannot possibly
invalidate certain global system invariants. Among these are arbitrary
side-effects due to dangling pointers, stack overruns, type casts, and out of
bounds array accesses. Since in many systems such conditions are neither
caught by the compiler nor by run-time checks, the amount of "debugging"
caused by introducing only a few such errors is enormous [Gri91b]. For
example, a system supporting arbitrary pointer structures should either
disallow explicit deallocation (and therefore needs garbage collection), or it
should guarantee the absence of dangling references (as can be done for
certain functional languages). To conclude, the language and its
implementation are an important point to consider when trying to write
correct programs efficiently. For the short implementation and testing times
taken by the Ethos project, the choice of the language Oberon-2 and the use
of a highly reliable compiler [Cre91] were absolutely crucial.

Run-time checks are often misunderstood. Generally, a run-time exception should be
avoidable by the programmer. To do so, the offending statement needs be guarded
properly. For example, to prevent index out-of-bounds exceptions, an indexed access
can be guarded with a range condition. Also, if such a guard is present a smart compiler
can optimize the code by not issueing a redundant run-time check. The same holds for
all the runtime checks listed above. However, there are problems where run-time
checks are absolutely unacceptable to solve a problem. A typical example is the
co-variance problem: Often one wants to claim that a certain method parameter of a
sub-class has a sub-type of the type declared for that parameter in the super-class. If a
type-system does not allow to express covariant type changes, e.g. to allow static

201

checkability, it is tempting to simply use a type guard in the method. If the sub-class
method is then called with a parameter of the type defined for the super-class method,
a run-time exception results. This is not the way to do it, as there is no way for the caller
of the method to prevent this situation: Late binding of methods makes this
impossible. For the sake of an appropriate language construct it has been done in Ethos
at a few places. Possibilities of a clean solution to this problem are discussed in the
conclusions, Section 4.4,

Despite program validation, testing a program is important: Unless the
program got generated fully automatically (and specification and transformer
are known to be correct), there is always the chance of trivial errors like typing
mistakes or identifier misnomers. In practice, testing is even more important
as the feat of treating large systems in a largely formal manner is still a
pipe-dream.

However, testing is by definition (and for non-trivial programs even in
principle) non-exhaustive. Hence, it cannot be used to validate a program, but
only to falsify it. The quality of the testing process depends highly on the
attitude taken when testing a program. Testing should be done in a
destructive way, ie. the goal should be to find some way to falsify the
program. Often it is claimed that some testing instance independent from the
original programmer should be consulted. This is found only partially helpful:
In principle, no other person than the original programmer has such a deep
understanding where things can go wrong. Testing ones own programs then
requires the attitude of not letting a single error pass through. This goal in
turn leads to a different attitude when writing programs: abstractions on all
levels are conceived such that they are testable. (The most important rule is to
minimize interdependencies, such that individual parts can be tested
individually.)

Bearing invariants in mind becomes the guiding programming principle.
Only if the invariants maintained by a certain abstraction (a procedure, a class,
a module, a sub-system) are clear, it is possible to fulfill the task of
implementing the abstraction. This is best accomplished if the concept
captured by a certain abstraction follows from the meaning of the name given
to the abstraction. (Badly chosen names are one of the biggest hurdles when
trying to master a complex system.) Testing the implementation of an
abstraction is best done in a fashion where the tester knows the
implementation details. (Such tests are sometimes referred to as white-box
tests.) By testing implementations bottom-up spotted errors are most likely to
be located in the implementation level currently under suspicion.

Testing programs can be considered an art in itself. While it is obvious that
one actually does not want to master the subject of testing but would prefer
to replace it by verification, the practical needs of testing are ubiquitous. In the
following, a few test methods are summarized that proved successful during

202

the development of Ethos.

The simplest and still most effective method is program scaffolding [Bro75].
Scaffolding means the addition of otherwise unneeded code just to support
testing of code under development. In its essence, this is meant when
answering the question for the need of having "debugging” tools with
"essentially we all use print statements to do the debugging’. Scaffolding is
best done on the module level: A special code section is appended to
construct test scenarios and invoke the various procedures and methods of
that module. Then the module to be tested is used as temporary top-level
module, i.e. by implementing a trivial user-interface for interactive testing.
Later, when the module gets mature and its implementation is trusted, the
scaffolding code can be removed again. (Sometimes one might prefer to just
comment it out for later use.)

A difficulty arises when it becomes necessary to recheck a module, say M,
that has already been trusted and built upon. One could re-scaffold that
module, but the resulting change of the module interface invalidates the client
modules. It is likely that in such a situation the scaffolding code of the
module M should be invoked by the scaffolding code of some module higher
up in the import hierarchy, say S. A simple solution to this problem is the
addition of an auxiliary module A that then is imported by M and 5. A is used
to couple the scaffolding parts of M and S, cf. Figure 3.36. This way a module
low in the hierarchy can be tested using all the functionality available (and
trusted) far up in the hierarchy without changing any of the existing interfaces,
hence avoiding massive recompilations and therefore shortening the test cycle
time.

other clients of M other clients of N

Scaffolding Code

Figure 3.36 — Auxiliary Scaffolding Module.

Finally a note on so-called "Debuggers” may be in order. From the experience
gained during the Ethos project it became apparent that traditiona! debuggers
do not help. Traversing heap structures is tedious and simple inspection
routines written on the fly but geared towards the inspected structure are
often more flexible. What is required however is an indication where a
program failed if an exception caused its termination. Experience showed that
a simple stack dump (essentially the sequence of procedure activations)
suffices. This is what has already been provided in the Oberon system.

203

4 Conclusions

The questions at the core of evety thesis are:
+ What has been learned?
+ What can be learned?

In this section it is tried to answer these two questions by assessing the Ethos
project and by drawing conclusions that point into the future of
Object-Oriented Programming Languages and Operating Systems.

4.1 Was it Worth the Effort?

Since the early Lisp and Smalltalk systems, designs were driven by the idea to
get rid of the traditional separation of operating system and application. The
goal has been and still is the extensibility on all levels of a system. However,
all early systems where built on the basis of untyped languages. Untyped
programs have only weak static semantics, i.e. semantics derivable from the
program text without executing the program. This gets worse if the untyped
language is purely object-oriented. Then every operation is potentially subject
to late binding. Also, most Lisp dialects and Smalltalk fail to support a proper
module concept. The absence of types and modules makes these systems
complex and hard to manage, ie. basically unsuitable for designing large
systems,

Such problems of the early approaches can be mostly overcome by using a
language supporting modules and a strong type system. However, only recent
language developments fulfill these requirements. Therefore, it was felt
justified to develop the new operating system Ethos using the recent
programming language Oberon-2 [MW91]. To avoid re-inventing too many
wheels, Ethos follows many of the concepts of the Oberon system.

The extension potential of Ethos is better compared to systems like
Smalltalk than to traditional operating systems, where a strict boundary
between applications and operating system exists. Other than most existing
operating systems, including Oberon, Ethos supports prototyping of low-level
components within the running system. For example, it is possible to extend
the heap manager or the module loader, where the latter may be useful when
exploring new object file formats. The organization of all services into classes
allows extensions on all levels, while the use of polymorphic typing in

204

conjunction with late bound procedures and dynamic integration facilities
enables the integration of extensions into the running system. For parts of the
Oberon system, in particular for viewers and for extensible objects defined in
the text and graphics subsystems, this is also possible. However, other parts of
Oberon - especially the low-level core — are realized in a traditional,
non-extensible fashion.

A possible point of criticism is the lack of support for access protection,
multi-programming, multiple processors, and distributed computing. These
are interesting fields, and they are tightly related to the way a system is
designed. Still, it is felt that the concentration on a single-user workstation
operating system was justified, as the narrowed scope allowed for a more
substantial treatment of the remaining problems. Also, some of these aspects
can be added as extensions to the existing system, including a certain degree
of multi-programming and transparent support for remote resources. However,
for a future project it would be interesting to reconsider aspects of
concurrency and protection.

4.2 Isthe Price Paid Justified?

Is the price paid in terms of reduced performance and increased complexity
Justified? The most crucial decision made when designing Ethos was to use a
single language and a single extension model on all levels of the system. This
places a heavy burden on the language but simplifies implementation
drastically. On the one hand, the language had to support low-level
programming for foundation modules and device drivers. On the other hand,
higher-level modules had to be implemented in an expressive and type-safe
way. For example, in the original Ceres implementation of the Oberon system
[WG88], Assembly language was used to implement the lowest foundation
module Kernel, as well as to implement the critical device driver for the
bitmapped display. However, the increased speed of recent hardware and the
improved code quality achieved by using the Oberon-2 compiler [Cre91]
justified the coding of the whole system using the single language Oberon-2.

Although the Ethos raster operations support clipping to rectangular bounds, which the
Oberon version does not, the Ethos raster operations coded using Oberon-2 are
between 20% slower and 40% faster (!} than the Oberon version coded in Assembly
language. (Precise measurements were found almost impossible due to caching
effects.) The lesson learned was that the use of a high-level language permitted easy
re-arrangements of code without introducing subtle errors, hence making it far easier to
tune frequent cases than when using Assembly language. (Ancther lesson learned is
that for typical raster operations the overhead of low-level rectangular clipping can be
neglected.)

205

The second decision, i.e. to use a single extension mode

more critical. Using an object-oriented approach even for I!;v:\-/as fpund to be
the system introduces significantly more indirections into the Ethes svst
than present in, say, the Oberon system. The most critical interface ,ys fhr;
provided by the Stream type and its subtypes, as typical invocations on
objects of type Stream ask for reading or writing a single byte or a fey bytes
Hence, the overhead paid for using the fully general Carrier/Rider schemé
applied to byte streams is significant (about 20 to 80% compared to Oberon)
However, it was felt tolerable in the execution context of the runnin .
(often less than 20%), which normally does more than just rea
writing single bytes.

For current language technology it is indeed critical to support extensibility
by means of late binding on the level of primitive system functionality. The
results are tolerable, but in order to achieve a performance that compares well
to less extensible systems, a different language implementation technique is
required. For example, in-line caches might be used to automatically detect
and optimize the case where a late-bound operation is invoked frequently
with the same binding. This technique is essential for implementations of
pure object-oriented languages where even integers are objects [DS84]
[HCU91][CU91], but it could as well be applied to hybrid object-oriented
languages.

level services of

g system
ding and

4.3 How Difficult are Extensions to do? Where are the Limits?

The level of difficulty experienced when trying to extend a system depends on
both the complexity perceived when trying to comprehend the system, and on
the degree of structure imposed on extensions of the system. The former
aspect is a matter of size and structure of the original system, where it helps
to carefully use modules and types to organize a system. The latter aspect is of
more fundamental nature: How can a system be designed to allow for a
maximal extension potential? Of course, the empty system has the largest
extension potential, as it does not enforce anything. However, for a system to
be meaningfully extensible, it is necessaty that extensions are (or can be) just
as extensible as the original system. Hence, the extension problem has an
inductive nature and aspects of orthogonality and composability are to be
considered. To manage such problems it is necessary to find and define
principles that can be used to create extensible structures in a uniform way.
The Ethos project aimed at the two-fold goal of investigating and finding
useful design principles while at the same time validating these principles by
actually applying them to the design of the Ethos system. Whether this
approach was successful can only be judged by a few experiences made when

206

actually extending the system. For a meaningful assessment of the simplicity
and potential of extending Ethos, a longer period of study and a broader range
of users would be necessary. (The Ethos system has mainly been extended by
the author, but additional experiences stem from porting some applications
from Oberon to Ethos, where the ports were jointly done by the author and
one of his colleagues (Robert Griesemer), who also implemented these
applications.) The experience gained so far is nevertheless encouraging: The
camplexity of the overall system seems masterable due to the two-level
structure imposed by modularization and typing.

The Ethos extension model (cf. 2.3, 2.4) is quite rigid and departs from the
tradition of object-oriented systems in not promoting code inheritance, and
thereby in hindering direct code re-use. Instead, the emphasis is on subtyping
and the re-use of client code due to sharing of polymorphic interfaces. The
limits of this extension model are set by the limits of message forwarding:
Whenever resorting to another implementation to handle default cases,
forwarding instead of superclass invocation is recommended. However,
forwarding to another object changes the identity of the receiver object, and
therefore severely restricts the potential of self-invocations. A way out of this
dilemma is the support of delegation instead of forwarding. However,
simulating delegation by means of forwarding in conjunction with an
additional auxiliary parameter [J291] leads to tedious interfaces and calling
conventions. A support for delegation in the language would ease the
situation significantly. However, it is not at all clear how this can be done in
an efficient yet type-safe manner (cf. 4.4.3).

4.4 What can be Leamed?

The design principles developed in the course of the Ethos project, as well as
the actual structure chosen for the Ethos system may be used as a starting
point for a similar project. While these points have been covered extensively
in the previous chapters, this section adds concrete conclusions drawn for
various components of a system, covering the processor and machine
architectures, the language design and implementation, and the software
modules. Of course, it is not claimed that everything that, say, a processor
should provide is listed. Instead, features are mentioned that are typically
missing in current solutions, Naturally, this section does not present definite
results, but hints at possible future work. R

207

4.4 What a Processor Architecture should Provide

The processor should support the checking of properties that need be
checked to guarantee safety, and that need be checked at run-time due to
static undecidability. Such conditions are: Stack overflows; dereferencing of
unbound pointers (value NIL); numbers out of range when used to index
arrays, to execute a case switch, or coerce to types defined over a smaller
range. Stack overflows can be caught using a stack limit register. (This is so
simple that it is unbelievable that nearly no processor supports it; notable
exceptions being the Lilith [Ohr84] and Hyperstone [Hyp87] processors.) NIL
dereferencing should be caught when computing an address base [Hyp87],
e.g. by means of a hint to the used compute instruction that a certain value
should not become zero, or by means of a test and trap instruction that
avoids conditional branching and may be implemented using imprecise
exceptions [Dec92].

The processor should support an unstructured and unconstrained (flat)
address space to avoid special cases in the software. Likewise, the processor
should not introduce special protection schemes like distinguishing between
user and supervisor modes. (A small set of privileged instructions used to
actually extend the processor architecture within a trusted micro-kernel may
be acceptable, though.) It should be possible to define domains within the
single global address space and assign certain access tags to such domains,
Then, the processor traps when accessing an address within a domain which
holds a tag that does not match the one currently held by the processor.

442 What a Machine Architecture should Provide

The machine should support single address space architectures, where
everything available is mapped to unique addresses. To implement protection
in hostile environments, it is useful to support protection ranges within the
linear address space. In fact, recent work shows that the traditional protection
schemes based on memory management units introduce unnecessary costs
into the critical path of every memory access [KLCx91][WS92][Pou91]. The
remaining purpose of a memory management unit is the mapping of a
(single) large logical address space to a smaller physical one.

208

443 What a Language Should Allow / must not Allow

Systems. A language should support strong typing and explicit support for
modularization [Szy92b]. To allow for nested structuring of larger systems, it
would be helpful if a module can be used to encapsulate a group of modules
without introducing efficiency problems. The concept of separating systems
and modules — where systems are kind of supermodules used to group
modules and other systems - proposed by Cardelli [Car89] is not
recommended. Instead of introducing another concept, the module concept
itself should be made flexible enough. For example, a module should be able
to re-export arbitrary parts of other modules.

Subtyping/Subclassing. To avoid conflicts between subtyping and subclassing
hierarchies — where subclassing is merely used to inherit code, while
subtyping expresses conformance relations — the language should distinguish
these two concepts (as is done in Emerald [Hut87][Bla91]). For example, a
plain subtyping hierarchy, as present in the language Oberon, could be
extended to allow binding of operation signatures to types. However, concrete
implementations of such operations are not bound to the type, but to a class.
A class then is nothing but the implementation of a specific type, and
multiple classes may implement a single type. This av0|ds the misuse of
subtyping to introduce implementation alternatives.

In a next step, the subclassing mechanism may be introduced. For a class €
implementing a type T derived from the base type T0, this can be done by
allowing any implementation of 70 to be bound to become the base class of
C, cf. Figure 41. The concept can be made more powerful, by supporting
semi-dynamic superclasses bound at object creation time, or dynamic superclasses
changable throughout an objects lifetime.

T~ T0 Tissubtypeof 0
C—T CimplementsT
C ~—» 0 Cissubclass of CO

Figure 4.1 — Subtyping vs. Subclassing.

209

If a class C" implements a type T' being an arbitrary subtype of 70, it would be
especially interesting to allow (' to be used as a semi-dynamic or even
dynamic base class of C, cf. Figure 4.2. Doing so requires separate instances of
class €’ and to delegate messages from an instance of C to an instance of C',
This way, the advantages of delegation could be combined with those of
strong typing. However, it is not clear how or if this proposal can be realized
in a type-safe yet efficient manner.

Figure 4.2 ~ Fully Dynamic Subclassing using Delegation.

Covariant Subtyping. Another crucial aspect is the correct treatment of covariant
subtyping of in- and in/out-parameters of operations. A trivial solution is to
forbid covariance in these situations by using a type system based on
contravariance, as has been done for Oberon-2 [MW91]. However, such a
type system is not expressive enough to .describe certain requirements.
Another solution is the separate introduction of genericity to express certain
covariant subtyping conditions in the case of homogeneous collection types.
Another ~ but incorrect — possibility has been chosen for Eiffel [Mey88],
where the construct fike current allows to express that an argument of a
method should be of the same type as the receiver. This is merely a way to
express genericity in an unsafe manner [Coo89] since it does introduce the
covariance problem. A global type check of a program can avoid covariance
problems at run-time [Mey92], but is not a feasible solution for extensible
systems (cf. 1.1.2).

Loopholes. To be a replacement for most hardware-based protection
mechanisms, a language implementation should be type-safe. To make this
possible, the language itself must not define constructs that cannot be
implemented in a type-safe manner without introducing an unacceptably high
run-time overhead, i.e. constructs that are doomed to introduce loopholes into
the implementation.

In the case of the languages Oberon and Oberon-2, a few loopholes are
known that should be eliminated from the language definitions. First of all,
the WITH construct applied to designators of pointer type is unsafe, as
illustrated in the following code example.

210

TYPE
P=POINTERTOR;
R = RECORD END;
P1 = POINTERTOR1;
R1 = RECORD (R) x: INTEGER END;

. PROCEDURE F;
VAR p: P; p1: P1;
PROCEDURE G;
BEGIN NEW(p) END G;
BEGIN NEW(p1); p := p1:
WITH p: PA DO
px:=0; (xlegal, since p has been guarded to P1%)
G; (xthis destroys the assertion of the WITH guardx)
px =42 (xhavociix)
END
END F;

A possible solution would be to disallow the application of WITH to pointers,
to remove WITH from the language altogether, or to introduce additional type
guards wherever the compiler cannot statically guarantee that the regional
guard still holds. The first alternative seems to be the best and the third the
worst choice.

Another loophole of cutrent versions of Oberon and Oberon-2 is the special
compatibility rule for formal reference parameters of type ARRAY OF
SYSTEM.BYTE. As explained earlier (2.4.1), this feature should at least not be
used within module interfaces, unless the corresponding modules are
declared low-level and unsafe. Even better, the special compatibility rule could
be eliminated from the language definitions. (Recent versions of the Oberon
and Oberon-2 compilers at least emit warnings when a module uses this
unsafe compatibility rule.)

Finally, a loophole introduced by the system implementation results from
the ability to unload a module. If this is done in a careless way, dangling
procedure references may result, cf. 3.4.3.2.

4.4.4 What a Compiler should do

Assuming that the language definition includes a strong type system that
allows for a type-safe implementation, the compiler (plus the run-time system,
if necessary) should actually provide for a type-safe implementation. To da so,
the compiler should detect the use of uninitialized variables, especially in the
case of reference types (pointers, procedure variables). If for some variables
this is statically undecidable ~ or the compiler complexity gets unacceptable —
these variables should be initialized to some safe value, e.g. NiL for reference

211

types.

The original Oberon compiler/system [WG88] causes global and heap allocated
variables to be initialized, but does not initialize variables allocated on the stack, This
was done for efficiency reasons: The machines used for the first Oberon
implementation were to slow to tolerate the increased procedure activation costs, Not
Initializing stacked variables was possible as the garbage collector was only invoked
when the stack was empty and that the garbage collector implementation assumes that
all pointers either point to a valid object, or are unbound (NIL). However, severe
side-effects can result, if a program erroneously dereferences an uninitialized pointer.
Therefore, the Oberon-2 compiler [Cre91] improved the situation by also initializing
stack allocated pointer variables.

In conjunction with conservative garbage collection techniques applied to the
stack [Tem91] (cf. 3.4.2) a loophole in the current Oberon and Ethos
implementations exists (detected by Marc Brandis), which could be fixed by
the compiler. The following code fragment illustrates the situation. (For the
original Oberon implementation this is not a problem, as the garbage
collector is only invoked when the stack is empty.)

PROCEDURE F;
VAR p: POINTER TO RECORD x, y: INTEGER END;

PROCEDURE G (VAR x: INTEGER);
BEGIN

p = NIL; (xeliminate last pointer to object holding the actual parameter bound to xx)
(xcause garbage collectionx)
x =42 (xhavocllx)

END G;

BEGIN NEW(p); G(py)
END F:

A possible fix would be the maintenance of an invisible ("shadow") pointer to
the endangered object. Such a pointer needs to be set only if the compiler
cannot guarantee that a pointer will survive anyway. Another possibility would
be to loosen the rules to decide whether a value on the stack is potentially a
pointer by marking a block even if a value points into the block, instead of to
the block origin address. Experiments showed that this approach leads to a
significant increase in pointer candidates, thereby slowing garbage collection
down. Finally, the problem can be solved by not using conservative collection
at all. Then, stack frame descriptors must be used that are either anchored by
pushing an additional tag (likely too costly), or by using the return addresses
stored in each stack frame [Gol911.

212

44.5 What Proper Modules should provide

Modules are a language issue, as far as the definition (or absence) of the
module construct is concerned. Besides its availability, the proper use of a
module construct is equally important. For a system to be trustworthy, all
interfaces of common use should be safe, where it is helpful to have a way to
express safety of an interface in terms of the programming language (e.g.
using a pseudo-module SYSTEM, as is done in Oberon).

Another issue are provisions for extensibility, where especially modules
providing extensible services should have a safe interface. Having a safe
interface, a module can maintain and guarantee certain invariants that no
possible client of the module can invalidate. This is achieved by
encapsulation, e.g. using abstract data types. On the other hand, to allow for
extensions, .a module cannot encapsulate everything, as fully encapsulated
abstractions (like abstract data types) are just not extensible. The conflict can
be circumvented if a module provides means for extensions that again can
establish and maintain (enforce) invariants, while being forced to respect
invariants of the extended abstraction.

A possible approach utilizes type- or class-bound operations in conjunction
with read-only variables: An extension can override the implementations of
these operations to enforce its own invariants, while it has to call the original
versions of the base implementation to modify the read-only variables.
Therefore, invariants of base and extension are maintained simultaneously.
Applying this scheme repeatedly leads to safely extensible extensions (sic!). This
is precisely what a proper module should provide: safely extensible
abstractions, that potentially are themselves extensions. -

4.5 The Future

Many hints on what could be done in future projects are given in the previous
sections of this chapter. Hence, this final section concentrates on the possible
future of the Ethos project itself, by asking two questions:

» What is missing?
» How could one proceed?

The main neglect of the Ethos design is the missing support for object
protection beyond the static limits that can be set using the module and type
system of the language. This hinders the robust support for multiple clients
sharing parts of the objects of an Ethos system. Likewise, concurrency and
especially distribution aspects are only partially supported.

213

A possible way to proceed would be the improvement of the
meta-programming support, allowing to intercept individual accesses to
objects, or to all objects of a certain class. A problem is how this can be done
efficiently if support for objects on a medium granularity is to be continued. A
possible approach could be the introduction of proxy objects [Sha86] that take
the place of objects in specific situations. A proxy object looks and behaves as
if it were the represented object, while actually filtering and forwarding to it.
Wherever a normal object does the job, no extra costs are introduced, but
whenever an object needs to be accessed across certain boundaries
(machines, protection domains), a proxy can be passed instead. Hence, proxy
objects could be used to solve protection issues and to transparently support
concurrency. A proper integration of the proxy concept might require (partial)
integration into the language. Also, a useful and extensible coding scheme for
access rights needs to be established, where the capability concept [TMR86]
might serve as a starting point.

Another issue are the default implementations of services in Ethos. Some of
these are rather heavy-weight by means of algorithmic complexity and source
code size. Introducing new implementations that in principle could build on
the default implementations are sometimes hindered by the strong modular
encapsulation. However, simply exporting all building blocks can easily violate
safety. For example, the file system implementation contains a B-tree
implementation. Exporting the B-tree on the same [evel as the file system
could allow to manipulate the file directory without respecting file system
invariants. A better way would be to introduce modules with non-public
interfaces that can be provided as building blocks for certain extensions. (For
a possible language support cf. 4.4.3) Thereby implementations can be
structured into frameworks, as has been done in the Choices project [CRI87].

A critical point of the Ethos design is the reliance on forwarding for
extensions in conjunction with a programming language that was designed
with a different extension model in mind (i.e. inheritance). A future Ethos
version might be based on a refined language that directly supports concepts
of forwarding and delegation.

Finally, Ethos needs further steps of evolutionary refinement and concept
validation. Many more applications should be implemented, and the set of
design principles should be taken further. For certain concepts a cleaner
foundation should be sought. An example is the abstraction from the physical
pracessar, which is essentially not present in the current Ethos system. The
integration of a micro-kernel design [Gie90] could be helpful, where it
remains a somewhat open issue what to put into such a kernel.

215

Bibliography

The bibliography follows several goals. First of all, it is a complete list of
material referenced from within the body text. (The sections referencing a
particular entry are listed in curly brackets.) Secondly, the bibliography itself is
partially commented. Comments have been added when the plain title of a
referenced work does not indicate why it is interesting in the scope of this
thesis. (An uncommented but rather complete bibliography may be found in

[Sha921)
ABBx86

Ado85

AH87

Ame87

AN88

App85

App90a

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanlan,
M. Young. Mach: A New Kernel Foundation for UNIX Development.
Proceedings of the Summer USENIX Conference, Atlanta, GA. Jul. 1986.
2.2,3.4.4}

Adobe Systems, Inc. PostScript Language Reference Manual.
Addison-Wesley, Reading, MA.1985. {3.47,3.47.3}

PostScript as an example of a "bottleneck” interface to graphical output devices.

G. Agha, C. Hewitt. Actors: A Conceptual Foundation for Concurrent
Object-Oriented Programming. In: B. Shriver, P. Wegner [eds.].
Research Directions in Object-Oriented Programming, 49-74. The MIT
Press, Cambridge, MA.1987. {3.4.4}

POOL-T — A Parallel Object-Oriented Language. In: A. Yonezawa, M.
Tokoro [eds.]. Object-Oriented Concurrent Programming, 199-220.
The MIT Press, Cambridge, MA.1987. {3.4.4}

M. C. Atkins, L. R. Nackman. The Active Deallocation of Objects in
Object-Oriented Systems. Software — Practice and Experience, 18:11,
1073-1089.Nov.1988. {25.3,3.4.2.4}

Apple Computer, Inc. Inside Macintosh. Addison-Wesley, Reading,
MA.1985. {3.4.4,34.74,3.4.8}

Apple Computer, Inc. The TrueType Font Format Specification. Version
1.0, APDA MOB25LL/A. Apple Program Developers Association,
Cupettino, CA.1990. {3.4.7.3}

TrueType as an example for a device-independent font-rasterization system.

216

App90b

Atk89

Bx85

Bac86

Bar88

BCFx92

Ben88

Bla91

BM72

Bro75

Apple Computer, Inc. Speed your software development with
MacApp. Develop ~ The Apple Technical Journal, 2, 155-171. Apr.

1990, {3.4.8}
Describes the application framework MacApp.

M. C. Atkins, Implementation Techniques for Qbject-Oriented Systems.
Ph.D. Thesis. University of York, UK. Jun.1989. {253,3.4.2.4}

Additionally to [AN8S8]: Contains discussion of weak pointers to be used instead
of finalization bemg built into a system, -

F. L. Bauer et al. The Wide Spectrum Language CIP-L. Lecture Notes in
Computer Science, 183. Springer-Verlag, Berlin, D.1985. {3.1.2}

M.). Bach. The Design of the UNIX Operating System. Prentice Hall,
Englewood Cliffs, NJ.1986. {3.4.4}

J. F. Bartlett. Compacting Garbage Collection with Ambigous Roots.
Report, 88/2. DEC Western Research Laboratory, MA. Feb. 1988.
{34.2.3}

Conservative garbage collection.

M. Brandis, R. Crelier, M. Franz,). Templ. The Oberon System
Family. (Submitted for Publication). Institute for Computer Systems,
ETH Zurich, CH.1992, {3.4.7.3,3.6,3.6.2}

). Bentley. More Programming Pearls — Confessions of a Coder.
Addison-Wesley, Reading, MA.1988. {3.1.2}
Contains "Column 9: Little Languages". '

A. Black. Types and Polymorphism in Emerald. In: J. Palsberg, M.I.
Schwartzbach [eds.]. Types, Inheritance and Assignments — A
Collection of Position Papers from the ECOOP'91 Workshop W5,
Geneva, Switzerland, July 1991. Appeared as Technical Report
DAIMI PB-357. Computer Science Department, Aarhus University,
DK Jun.1991. {1.1.1,4.4.3}

R. Bayer, E. M. McCreight. Organization and Maintenance of Large
Ordered Indexes. Acta Informatica, 1:3,173-189.1972. {34.54}
Introduces B-Trees.

F. P. Brooks. The Mythical Man-Month — Essays on Software
Engineering. Addison-Wesley, Reading, MA.1975, {3.7.3}
Hints at the importance of cade scaffolding.

BW88

Cam92

Car89

CCHx89

CHCS0

CHO%2

Cha92

Che84

217

HJ. Boehm, M. Weiser. Garbage Collection in an Uncooperative
Environment. Software — Practice and Experience, 18:9, 807-820. Sep.
1988. {3.4.2.3}

Conservative garbage collection,

R. H. Campbell. Private Communication. Mar. 1992, {2.2}

Campbell admitted that the Choices project was hindered by the missing
run-time tyﬁe and garbage collection support in C++; changing C++ was not an
option for the Choices project.

L. Cardelli. Typeful Programming. Research Report, 45. DEC Systems
Research Center, Palo Alto, CA. May 1989. {1.1.1,24.1,25.1,4.4.3}

Makes strong point for static typing and type checking ("typeful programming"),
in favour of separate compilation; introduces language Quest having a
second-level type system.

P. S. Canning, W. R. Cook, W. L. Hill, J. Mitchell, W. G. Olthoff.
F-bounded quantification for object-oriented programming.
Proceedings of the Conference on Functional Programming Languages
and ComputerArchitectures, 273-280.1989. {111}

W. R. Cook, W. L. Hill, P. S, Canning. Inheritance is not subtyping.
Proceedings of the ACM Conference on Principles of Programming
Languages (POPL'90), 125-135. ACM Press. Addison-Wesley,
Reading, MA.Jan.1990. {111}

K. Chen, P. Hudak, M. Odersky. Parametric Type Classes. Proceedings
of the ACM Conference on ISP and Functional Programming. Jun. 1992.
{111}

C. Chambers. Object-Oriented Multi-Methods in Cecil. Proceedings of
the Sixth European Conference on Object-Oriented Programming
(ECOOP'92), Utrecht, The Netherlands, June, 1992, Lecture Notes in
Computer Science, 615, 33-56. Springer-Verlag, Berlin, D.Jun. 1992.
{11.1,1.1.2}

D. R. Cheriton. The V Kerel, a software base for distributed
systems. IEEE Software, 1:2,19-42. Apr.1984. (2.2}

Example for an easly "micro kemellike architecture masking aspects of
distribution; extensions by adding new setvice modules and performing
inter-process communications (IPCs).

218

Che86

CIM%89

CL90

Coh81

Col60

Co089

Cox87

CRI87

Cre91

D. R. Cheriton. VMTP: A Transport Protocol for the Next Generation
of Communication Systems. Proceedings of the ACM Symposium on
Communications Architectures and Protocols (SIGCOMM'86). Aug.
1986. {2.2}

Describes the VMPT transport protocol used in the V kernel to perform remote
inter-process communications (IPCs); Interesting part of the V system [Che84].

R. H. Campbell, G. M. Johnston, P. W. Madany, V. F. Russo.
Principles of object-oriented operating system design. Technical
Report, R-89-1510. Department of Computer Science, University of
llinois at Urbana Champaign, IL. Apr.1989. {2.2,34.3.4}

Choices OS; mimics fairly conventional OS's but uses frameworks inside to gain
structure and flexibility.

P. R. Calder, M. A. Linton. Glyphs: Flyweight Objects for User
Interfaces. Proceedings of the ACM Symposium on User Intetface
Software and Technology (UIST90). Oct.1990. {3.4.6}

Introduces concept of objects beinf lightweight enough to use one for every
character but flexible enough to implement complex objects, -

J. Cohen. Garbage Collection of Linked Data Structures. ACM
Computing Surveys, 13:3,341-367. Sep. 1981, {2.5.3,3.4.2.3}
Survey of garbage collection techniques.

G. E. Collins. A Method for Overapping and Erasure of Lists.
Communications of theACM, 3:12, 655-657. Dec. 1960. {2.5.3}

Proposes reference counters to detect garbage.

W. R. Cook. A Proposal for Making Eiffel Type Safe. Proceedings of
the Third European Conference on Object-Oriented Programming
(ECOOP'89), Nottingham, England, 57-70. Cambridge University
Press, UK.Jul.1989. {1.1.2,4.4.3}

Isolates the contravariance violation of the fike current construct found in Eiffel
and proposes a solution.

B.). Cox. Object-Oriented Programming: An Evolutionary Approach.
Addison-Wesley, Reading, MA.1987. (2.2}

R. H. Campbell, V. F. Russo, G. Johnston. Choices: The Design of a
Multiprocessor Operating System. Proceedings of the USENIX C++
Workshop, 109-123. Santa Fe, NM. Nov.1987. {2.2,4.5}

R. Crelier. OP2: A Portable Oberon-2 Compiler. Proceedings of the
Second Intemational Modula-2 Conference. Loughborough University,
UK. Sep.1991. {3.4.3.4,373,4.2,44.4}

The compiler used 1o develop Ethos.

CSA

Cu91

Dec92

DG87

Dij65

Dij68

Dij76

DLA8S

219

R. Carr, D. Shafer. The Power of PenPoint. Addison-Wesley, Reading,
MA.1991. {2.2}

C. Chambers, D. Ungar. Making Pure Object-Oriented Languages
Practical. Proceedings of the Sixth Conference on Object-Oriented
Programming, Systems, and Applications (OOPSLA'91), Phoenix, AZ
SIGPLAN Notices 26:11,1-15. ACM Press. Addison-Wesley, Reading,
MA. Oct.1991. {1.1.3,11.4,4.2)

Demonstrates that a pure object-oriented language (Self) can be implemented in
away reaching about 50% of the performance of optimized C code.

Preliminary Alpha Architecture Handbook. (Special Announcement
Edition). Digital Equipment Corporation, Maynard, MA. Feb. 1992.
{4.4.1}

L. G. DeMichiel, R. P. Gabriel. The Common Lisp Object System: An
Overview. Proceedings of the First European Conference on
Object-Oriented Programming (ECOOP'87), Paris, F. Lecture Notes in
Computer Science, 276. Springer-Verlag, Berlin, D.Jun.1987. {1.1.1}
CLOS introduction.

E. W. Dijkstra. Cooperating. Sequential Processes. Technical Report
EWD-123, Technological University, Eindhoven, NL. 1965. in: F.
Genuys [ed.]. Programming Languages, 43-112. Academic Press,
London, UK.1968. {3.4.4,35.3,3.7.3}

Introduction of semaphores.

E. W. Dijkstra. The Structure of the "THE'-Multiprogramming
System. Communications of the ACM, 11:5, 341-346. May 1968. {12,
1.21,23.2,33.1}

The THE operating system was a forerunner of systems designed using a strict
layering of abstractions.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, NJ.1976. {3.4,3.7.3}
Introduces concept of guarded commands (used in if and do constructs).

P. Dasgupta, R.J. LeBlanc Jr, W. F. Appelbe. The Clouds distributed
operating system: Functional description, implementation details,
and related work. Proceedings of the Eighth International Conference
on Distributed Computer Systems (ICDCS'88), San José, CA. |EEE, New
York, NY.Jun.1988. {22}

Clouds OS; concentrates on integrating support for reliable objects into low
levels of the OS.

220

DLMx78 E. W. Dijkstra, L. Lamport, A.J. Martin, C. S. Scholten, E. F. M.

DMNBS

DNé66

DoD80

Dod92

Don%90

DS84

DS90

ESS0

FH88

Steffens. On-the-fly Garbage Collection: An Exercise in Cooperation.
Communications of the ACM, 21:11,966~975. Nov.1978. {(3.4.2.3}
Early example for an asynchronous garbage collector; problem is its inefficiency.

O-. Dahl, B. Myrhaug, K. Nygaard. SIMULA 67 Common Base.
Norwegian Computing Center, Oslo, N.1968. {1.1.1,24.2,3.7.3}

O4J. Dahl, K. Nygaard. Simula — An ALGOL-Based Simulation
Language. Communications of the ACM, 9:9. Sep. 1966. {3.7.3}

Ada Reference Manual: Proposed Standard Document. Department of
Defence, USA.Jul.1980. {1.1.1,3.7.3}

M. Dodani, C-S. Tsai. ACTS: A Type System for Object-Oriented
Programming Based on Abstract abd Concrete Classes. Proceedings
of the Sixth European Conference on Object-Oriented Programming
(ECOOP'92), Utrecht, The Netherlands, June, 1992. Lecture Notes in
Computer Science, 615, 309-328. Springer-Verlag, Berlin, D. Jun.
1992, {2.4.3}

C. Dony. Exception Handling and Object-Oriented Programming:
Towards a Synthesis. Proceedings of the Joint Conference of the
European Conference on Object-Oriented Programming and the ACM
Conference on Object-Oriented Programming Systems, Languages, and
Applications (ECOOP/OOPSIA’90), Ottawa, Canada. SIGPLAN
Notices, 25:10. ACM Press. Addison-Wesley, Reading, MA. Oct.
1990. {254}

L. P. Deutsch, A. Schiffman. Efficient Implementation of the
Smalltalk-80 System. Proceedings of the Eleventh Symposium on the
Principles of Programming Languages (POPL'84), Salt Lake City, UT.
ACM Press. Addison-Wesley, Reading, MA. 1984, {1.1.2,1.1.3,4.2}

E. W. Dijkstra, C. S. Scholten. Predicate Calculus and Program
Semantics. Texts and Monographs in Computer Science.
Springer-Verlag, New York, NY.1990. {3.7.3}

Most recent coverage of program semantics based on predicate transformers.

M. A. Ellis, B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, Reading, MA.1990. {1.1.1,2.5.4}

Contains the latest language revisions over the original language defined in
[5tr86].

A. J. Field, P. G. Harrison. Functional Programming. International
Computer Science Series. Addison-Wesley, Reading, MA. 1988.
{2.3.2}

Gie90

GJso

Gol83

Gol91

GR83

Gri91b

Grign

Gut85

GWB91

HARx88

221

M. Gien. Micro-Kernel Architecture — Key to Modem O

: ! perating
Systems Design. UNIX Review, 8:11. Nov.1990. {1.2.2, 4.5

D. K. Gifford, P. Jouvelot, M. A. Sheldon, J. W. O'Toole, Jr.. Semantic -
File Systems. 16-25. {3.5.2}

A. Goldberg. Smalltalk-80: The Interactive Programming Environment:
Addison-Wesley, Reading, MA.1983. {2.2,4.5}
Describes the Smalitalk programming environment.

B. Goldberg. Tag-Free Garbage Collection for Strongly Typed
Programming Languages. Proceedings of the Conference on
Programming Language Design and Implementation (SIGPLAN'91),
Toronto, Ontario, CDN. SIGPLAN Notices, 26:6,165-176. {4.4.4}

A. Goldberg, D. Robson. Smalltalk-80: The Llanguage and Its
Implementation. Addison‘Wesley, Reading, MA. 1983. {1.1.1, 2.2,
254}

Describes the large Smalltalk class library.

L. Griffiths. Modula-2 is Three Times less Emor Prone than C.
Proceedings of the Second International Modula-2 Conference, 332-338.
Loughborough University, UK. Sep.1991. {3.4.2.2,37.3}

Quantitative analysis of error classes as they occur when programming in C or in
Modula-2, respectively.

R. Griesemer. Oberon Lisp. Internal Memo. Institute for Computer
Systems, ETH Zurich, CH.Jun.1991. {3.4.2.3,3.4.8.4}
Example for an application successfully ported from Oberon to Ethos.

J. Gutknecht. Concepts of the Text Editor Lara. Communications of
the ACM, 28:9, 942-960. Sep. 1985, {3.4.6}

Introduces piece lists as a data structure to carry both, attribute runs and file
Tuns.

R. P. Gabriel, J. L. White, D. G. Bobrow. CLOS: Integrating
Object-Oriented and Functional Programming. Communications of
the ACM, 34:9,27-38.5ep.1991. {251}

Contains a useful definition of reflection (pp. 36-37).

F. Herrmann, F. Armand, M. Rozier, M. Gien, V. Abrossimov, |.
Boule, M. Guillemont, P. Leonard, S. Langlois, W. Neuhauser.
Chorus, a new technology for building UNIX systems. Proceedings of
the European Unix User Group Autumn Conference (EUUG Autumn),
Cascais, Portugal. Oct.1988. {2.2}

Describes the Chorus OS.

222

Harn

HCU91

Hee88

Hoa74

Hoa84

HP92

Hut87

Hyp87

Ing81

W. Harris. Contravariance for the rest of us. Journal of Object
Oriented Programming, 4:3,10-18. Nov. 1991, {1.1.1}

Explains the contravariance phenomenan. Makes a point for "inheritance is not
subclassing". Looks at multi-methods to cure contravariance problems. Two ways
of creating safe polymorphic code: (a) separating subtyping and subclassing, (b)
parametric polymarphism. (b) is further split into simple (unquantified)
parametric, bounded, and f-bounded quantification.

U. Holzle, C. Chambers, D. Ungar. Optimizing Dynamically-Typed
Object-Oriented Languages with Polymorphic Inline Caches.
Proceedings of the Fifth European Conference on Object-Oriented
Programming (ECOOP'91), Geneva, Switzerland. Lecture Notes in
Computer Science, 512, 268-287. Springer-Verlag, Berlin, D. Jun.
1992, {14.2,42}

Describes how to do on the fly compilation at run-time utilizing observed

polymorphisms. _
B. Heeb. Private Communication. 1988, {3.4.3.1}

Beat implemented an early experimental Oberon loader for the Macintosh. He
hinted at the problems of recursive loaders and suggested a non-recursive
variant.

C. A.R. Hoare. Monitors: An Operating System Structuring Concept.
Communications of the ACM, 17:10, 549-557. (Erratum in:
Communications of the ACM, 18:2, 95. February 1975.). Oct. 1974.
{3.4.4}

Systematic coverage of monitors.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
Englewood Cliffs, NJ.1984. {3.4.4}

B. Heeb, C. Pfister. Chameleon — A Workstation of a Different
Colour. (Submitted for Publication.). Institute for Computer Systems,
ETH Zurich, CH.1992. {353,3.6.2}

N. Hutchinson. Emerald: An Object-Oriented Language for Distributed
Programming. Ph.D. Thesis. Department of Computer Science and
Engineering, University of Washington, Seattle, WA, Jan. 1987.
{11.1,4.4.3}

hyperstone 32-Bit-Microprocessor ~ Users Manual. hyperstone
electronics GmbH, Konstanz, D.1987. (Issue April 1990). {4.4.1}

D. H. H. Ingalls. Design Principles Behind Smalltalk, BYTE, 6:8,
286-298.Aug.1981. {1.2.2}

JF88

JZ91

KL89

KLCx91

KMN%90

Knué8

Knu84

Knug86

KKP88

KR78

223

R. E. Johnson, B. Foote. Designing Reusable Classes. Joy
Object-Oriented Programming,1:2.Jun.1988. {2.2,3.5)

Defines notion of frameworks; makes claim that concrete classes should not be
extended,

mal of

R. E. Johnson, J. M. Zweig. Delegation in C++. Journal of Object
Oriented Programming, 4:3,31-34.Nov. 1991. {1.1.1,3.5,4.4)

Shows a simple (but not really natural) way of simulating delegation using C++,
Points out the subtle difference between forwarding and delegation. Concludes
in the question whether future languages will be class or delegation base, (Does
not ask the question why one does not add both to a single language ...)

W. Kim, F. H. Lochovsky. Object-Otiented Concepts, Databases and
Applications. ACM Press. Addison‘Wesley, Reading, MA. 1939,
(344}

Coverage of various OO concurrency approaches.

E.J. Koldinger, H. M. Levy, J. S. Chase, S.J. Eggers. The Protection
Lookaside Buffer. Technical Report, 91-11-05. Department of
Computer Science and Engineering, University of Washington,
Seattle, WA. Nov.1991. {4.4.2)

S. Krakowiak, M. Meysembourg, H. Nguyen Van, M. Riveill, C.
Roisin. Design and implementation of an object-oriented, strongly
typed language for distributed applications. Journal of
Object-Oriented Programming, 3:3,11-22. Sep.1990. {2.2}

Language Guide used for the single-language operating system Commandos.

D. E. Knuth. The Art of Computer Programming Vol 1: Fundamental
Algorithms. Addison-Wesley, Reading, MA. 1968. Second edition:
1973, {25.3}

D. E. Knuth. The TeXbook. Addison‘Wesley, Reading, MA. 1984.
{34.6}

D. E. Knuth. The METAFONTbook. Addison-Wesley, Reading, MA.
1986. {2.5.3,3.4.7.3}
Describes meta-fonts as a device-independent description of fonts.

G. E. Krasner, S. T. Pope. A cookbook for using the
Model-View-Controller user interface paradigm in Smalitalk-80.
Journal of Object-Oriented Programming, 1:3, 2649. Aug. 1988.
{2.3.2}

Good explanation of the MVC design principle.

B. W. Kernighan, D. M. Ritchie. The C Programming Language. Prentice
Hall, Englewood Cliffs, NJ.1978. {3.7.3}

224

ICRB%91

Lac91

Lam83

Mad91

Mag91

Marot

MCR%89

McCe0

Mey88

G. Kiczales, J. des Rivieres, D. G. Bobrow. The Art of the Metaobject
Protocol. The MIT Press, Cambridge, MA.1991. {251}

S. Lacourte, Exceptions in Guide, an Object-Oriented Language for
Distributed Applications. Proceedings of the Fifth European Conference
on Object-Oriented Programming (ECOOP'91), Geneva, Switzerland.
Lecture Notes in Computer Science, 512, 268-287. Springer-Verlag,
Berlin, D.Jun.1992. {254}

Contains a survey of approaches to exception handling in typed object-oriented
languages.

B. A. Lampson. A Description of the Cedar Language — A Cedar
Language Reference Manual, Technical Report, CSL-83-15. Xerox Palo
Alto Research Center, Palo Alto, CA.1983. {2.2}

P. W. Madany. An Object-Oriented Framework for File Systems. Ph.D.
Thesis (Draft). Department of Computer Science, University of
illinois at Urbana-Champaign, IL. Nov.1991. {2.2}

Explains Choices file system framework in detail (cf. [MCRx%89]).

B. Magnusson. Code Reuse Considered Harmful (Guest Editorial).
Journal of Object Oriented Programming, 4:3, 8. Nov. 1991. {1.1.1,
2.4.4, 3.5}

Makes the claim that using inheritance for code re-use is as bad as usin

procedures for code re-use in classical programs. Just as a procedure shoul

represent an algorithmic abstraction, a class should represent an abstraction in
the modeling space.

The GADGETS User Interface Management System. Structured
Programming,12:12,75-89. Dec.1991. {3.5.5}

P. W. Madany, R. H. Campbell, V. F. Russo, D. E. Leyens. A Class
Hierarchy for Building Stream-Oriented File Systems. Proceedings of
the Third European Conference on Object-Oriented Programming
(ECOOP'89), Nottingham, England, 311-328. Cambridge University
Press, UK.Jul.1989. {2.2}

Introduces Choices file system framework (cf. {Mad911).

J. McCarthy. Recursive Functions of Symbolic Expressions and Their
Computation by Machine. Communications of the ACM, 3, 184~195.
1960. {3.4.2.3}

B. Meyer. Object—Oriented Software Construction. Prentice Hall,
Englewood Cliffs, NJ.1988. {1.1.3,25.2,3.7.3,4.4.3}

Introduces language Eiffel to explain aspects of objectoriented software
construction.

Mey92

MG89

MMS79

MN91

MT86

MTG8S

MW91

Nau60

Nel91

Ode82

225

B. Meyer. Eiffel — The Language. Prentice Hall, Englewood Cliffs, NJ.
1992, {141,11.2,24.2,252,443}

Reference to most recent version of language Eiffel; introduces "System-Level Type
Checking" to fix safety problems with the type system (cf. [Co089]).

J. A. Marques, P. Guedes. Extending the Operating System to
Support an Object-Oriented Environment. Proceedings of the Fourth
ACM Conference on Object-Oriented Programming Systems, and
Applications (OOPSIA'89), New Orleans, LO. SIGPLAN Notices,
24:10.0ct.1989. {2.2}

Introduces operating system Commandos: Concentrates on mapping of objects
into domains (address spaces) spanning over multiple machines; language
oriented: Guide [KMNx90].

J. G. Mitchell, W. Maybury, R. Sweet. Mesa Language Manual,
Version 5.0. Technical Report, CSL-79-3. Xerox Palo Alto Research
Center, Palo Alto, CA. Apr.1979. {2.2,3.4.81}

Mesa is the language used throughout the Cedar system [Tei84].

M. S. Manasse, G. Nelson. Trestle Reference Manual. Research
Report, 68. DEC Systems Research Center, Palo Alto, CA. Dec. 1991.
{2.3.3.2}

The Trestle oracles used to adapt to screen-dependent resources are examples for
special directory objects.

S.J. Mullender, A. S. Tanenbaum. The design of a capability-based
distributed operating system. The Computer Journal, 29:4, 289-300.
1986. {2.2}

H. M0ssenbock, J. Templ, R. Griesemer. Object Oberon - An
Object-Oriented Extension of Oberon. Technical Report, 109.
Institute for Computer Systems, ETH Zurich, CH. Jun. 1989. (Revised
April 1990). {3.1.2,3.4.8.1}

H. Mossenbock, N. Wirth. The Programming Language Oberon-2.
Structured Programming,12:4.1991. {2.2,3.1.2,4.1,4.4.3}

P. Naur. Report on the Algorithmic Language ALGOL 60.
Communications of theACM, 3:5. May 1960. {3.7.3}

G. Nelson [ed.]. Systems Programming with Modula-3. Prentice Hall,
Englewood Cliffs, NJ.1991. {24.3,254,3.452,3.7.3}

M. Odersky. Extending Modula-2 for Object-Oriented
Programming. Proceedings of the First Intemational Modula-2
Conference, Bled, Yugoslavia. Oct. 1989. {2.4.2}

226

Ohr84

Omo91

OPS92

Org72

Par72

Pas89

PHT

Piko

Pou91

PPT%90

Ps83

R.S. Ohran. Lilith: A Workstation Computer for Modula-2. Dissertation
ETH Zurich, No. 7646.1984. {4.4.1}

S. M. Omohundro. The Sather Llanguage. Technical Report,
TR-91-34. International Computer Science Institute, Berkeley, CA.
Jun.1991. {2.4.2}

N. Oxhoj, J. Palsberg, M. I. Schwartzbach. Making Type Inference
Practical. Proceedings of the Sixth European Conference on
Object-Oriented Programming (ECOOP'92), Utrecht, The Netherlands,
June, 1992. Lecture Notes in Computer Science, 615, 329-349.
Springer-Verlag, Berlin, D.Jun.1992. {2.3.2}

The Muitics System: An Examination of lts Structure. The MIT
Press, Cambridge, MA.1972. {3.4.4}

D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15:12, 1053-1058. Dec.
1972, {232}

F. V. Peschel. Vamos — Entwurf und Realisierung eines erweiterbaren
Betriebssystems fiir Arbeitsplatzrechner. Dissertation ETH Zurich, No.
8713. Verlag der Fachvereine, Zurich, CH.1989. {2.2}

C. Pfister [ed.], B. Heeb, J. Templ. Oberon Technical Notes. Technical
Report, 156. Institute for Computer Systems, ETH Zurich, CH. Mar.
1991. {3.4.2.2,34.2.3,3.4.2.6}

R. Pike. 875, the Plan 9 Window System. Proceedings of the USENIX
Summer Conference, Nashville, TE. Jun.1991. {2.2}

D. Pountain, ARM60Q:; RISC Goes OQP. BYTE, 16:13, 841S49-60.
Dec.1991. {4.4.2}

The ARM600 uses a MMU that distinguishes between address and protection
mappings, the former called pages, the latter domains.

R. Pike, D. Presotto, K. Thompson, H. Trickey. Plan 9 from Bell Labs.
Proceedings of the Summer UK Unix User Group Conference
(UKUUG'90), London, GB, 1-9.Jul.1990. {2.2}

J. L. Peterson, A. Silberschatz. Operating System Concepts.
Addison-Wesley, Reading, MA. 1983. (Corrected Reprint of Second
Edition: 1986). {1.2}

PSSO

RAAx88

RBFx89

Rov84

RST89

RW92

SG86

Sha86

Sha89

227

J. Palsberg, M. I. Schwartzbach. Object-Oriented Type Inference.
Proceedings of the Sixth Conference on Object-Oriented Programming
Systems, and Applications (OOPSIA’'91), Phoenix, AZ. SIGPLAN
Notices 26:11,146-161. ACM Press. Addison-Wesley, Reading, MA.
Oct.1991. {11.2}

M. Rozier, V., Abrossimov, F. Armand, |. Boule, M. Gien, M.
Guiellemont, F. Herrmann, C. Kaiser, S. Langlois, P. Léonard, W.
Neuhauser. Overview of the Chorus Distributed Operating System.
Computing Systems Journal, 1:4, 305-370. The Usenix Association,
Dec.1988. {2.2}

R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Julin, D. Orr, R.
Sanzi. Mach: A Foundation for Open Systems. Proceedings of the
Second Workshop on Workstation Operating Systems (WWOS-II),
Pacific Grove, CA. Sep.1989. {2.2}

P. Rovner. On Adding Garbage Collection and Runtime Types to a
Strongly-Typed, Statically-Checked, Concurrent Language. Technical
Report, CSL-84-7. Xerox Palo Alto Reaserach Center, Palo Alto, CA.
Jul.1984. {253,34.2.4}

R. van Renesse, H. van Staveren, A. S. Tanenbaum. The Performance
of the Amoeba Distributed Operating System. Software — Practice
and Experience,19:3,223-234. Mar. 1989. {2.2}

M. Reiser, N. Wirth. Programming in Oberon. Steps Beyond Pascal and
Modula. Addison-Wesley, Reading, MA. 1992, {2.2}

R. W. Scheifler, J. Gettys. The X Window System. ACM Transactions
on Graphics, 5:2.1986. {34.7,34.7.3}

M. Shapiro. Structure and Encapsulation in Distributed Systems:
The Proxy Principle. Proceedings of the Sixth International Conference
on Distributed Computer Systems (ICDCS'86), Cambridge, MA. IEEE,
New York, NY. May 1986. - {4.5}

M. Shapiro. Prototyping a Distributed Object-Oriented Operating
System on UNIX. Research Report, 1082. Institut National de
Recherche en Informatique et en Automatique (INRIA),
Rocquencourt, F. Aug.1989. {2.2}

SOS operating system: Concentrates on fragmented objects — support of remote
objects via local proxy objects.

228

Sha92

Spa8e

S5

Sta89

Ste87

5tr86

SWe7

Szy90a

Szy90b

M. Shapiro. Object-Oriented and Operating Systems. Bibliography
file. Maintained by the SOR project. Institut National de Recherche
en Informatique et en Automatique (INRIA), Rocquencourt, F. May
92 (latest version, periodically updated). {bibliography}

Fetchable by anonymous ftp from ftp.inria.fr, directory INRIA/bib, file coos.bib.Z.

E. H. Spafford. Kernel Structures for a Distributed Operating System.
Ph.D. Thesis. Georgia Institute of Technology, Atlanta, CA. May
1986. 2.2

R. Sharma, M. L. Soffa. Parallel Generational Garbage Collection.
Proceedings of the Sixth Conference on Object-Oriented Programming,
Systems, and Applications (OOPSLA'91), Phoenix, AZ. SIGPLAN
Notices 26:11, 16-32. ACM Press. Addison-Wesley, Reading, MA.
Oct.1991. {3.4.2.3}

B. Stamm. Algorithms for Drawing Thick Lines and Curves on Raster
Devices. Technical Report, 107. Institute for Computer Systems, ETH
Zurich, CH. May 1989. {(3.4.7}

L. A. Stein. Delegation is Inheritance. Proceedings of the Second ACM
Conference on Object-Oriented Programming, Systems, and Applications
(OOPSIA'87), Orlando, FL. SIGPLAN Notices, 22:12. Oct. 1987,
{111}

B. Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, MA. 1986.
The latest language revision may be found in [ES90].

H. Schorr, W. Waite. An Efficient Machine-Independent Procedure
for Garbage Collection in Various List Structures. Communications of
theACM, 10:8,501-505. Aug. 1967. {3.4.2.3}

C. A Szyperski. Network Communication in the Oberon
Environment. Technical Report, 126. Institute for Computer Systems,
ETH Zurich, CH.Feb.1990. {3.4.4,3.5.3}

C. A. Szyperski. Towards Object-Oriented Structures for Open
Operating Systems. First Workshop on Object-Orientation in Operating
Systems, In: Addendum to the Proceedings of the Joint Conference
of the European Conference on Object-Oriented Programming and
the Conference on Object-Oriented Programming Systems,
Languages, and Applications (ECOOP/OOPSLA'90), Ottawa,
Canada. ACM Press. Addison-Wesley, Reading, MA. Oct. 1990.
{2.3.3.1}

Szy91

Szy92a

Szy92b

Tan87
Tan92

Tei84

Tem91

Tes85

TMR86

229

C. A. Szyperski. Write: An Extensible Text Editor for the Oberon
System. Technical Report, 151. Institute for Computer Systems, ETH
Zurich, CH.Jan.1991. {3.45.2,3.4.6,3.5.4}

C. A. Szyperski. Write-ing Applications: Designing an Extensible Text
Editor as an Application Framework. Proceedings of the Seventh
International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS'92), Dortmund, D. Prentice Hall, Englewood
Cliffs, NJ. Mar.1992. {2.2,3.4.6,3.4.84,3.5.4}

The Write text editor has been derived from the Ethos text system. This paper
explains many of the ideas behind the extension model of both the Write editor
and the Ethos text system.

C. A. Szyperski. Import is not Inheritance. Why we need both:
Modules and Classes. Proceedings of the Sixth European Conference on
Object-Oriented Programming (ECOOP'92), Utrecht, The Netherlands,
June, 1992, Lecture Notes in Computer Science, 615, 19-32,
Springer-Verlag, Berlin, D. Jun. 1992. {1.1.3, 114, 2.2, 2441, 242,
443}

A. S. Tanenbaum. Operating Systems: Design and Implementation.
Prentice Hall, Englewood Cliffs, N).1987. {1.2}

A. S. Tanenbaum. Modern Operating Systems. Prentice Hall,
Englewood Cliffs, NJ.1992. {1.2}

W. Teitelman. A Tour Through Cedar. /EEE Software, 1:2, 44-73. Apr.
1984, {1.1.2,2.2,3.4.8.1}

The Cedar system is an evolutionary predecessor of the Oberon system. Many of
the design aspects of Cedar have been carried through to Oberon, from where still
a considerable amount reached Ethos. Cedar is based on the language Mesa

[MMS79].

J. Templ. Design and Implementation of SPARC-Oberon. Structured
Programming, 15:12,197-205. Dec.1991. {3.4.2.3,4.4.4)

Contains the description of a technique for conservative garbage collection to
handle references in untaged stack frames.

L. Tesler. Object~Pascal Report. Structured Programming, (formerly:
Structured Language World), 9:3,10-17. Mar.1985. {1.1.1}

A. S. Tanenbaum, S. J. Mullender, R. van Renesse. Using Sparse
Capabilities in a Distributed Operating System. Proceedings of the
Sixth International Conference on Distributed Computer Systems
(ICDCS'86), Cambridge, MA, 558-563. |EEE, New. York, NY. May
1986. {2.2,4.5}

230

uJgs

Ungs4

Us87

Vet

WDHE&9

Web89

Weg90
wWG88s
waGss

WG92

WH1

D. Ungar, F. Jackson. Tenuring Policies for Generation-Ba:
Storage Reclamation. Proceedings of the Third ACM Conference
Object-Oriented Programming Systems, Languages and Applicati
(OOPSIA’88), San Diego, CA. SIGPLAN Notices, 23:11, 1-17. N
1988. {3.4.2.5}

D. Ungar. Generation Scavenging: A Non-disrupt
High-performance Storage Reclamation Algorithm. Proceedings of
ACM Symposium on Practical Software Development Environme
Pittsburg, PA. SIGPLAN Notices, 19:5, 157-167. Apr. 1984. {2.
3.4.2.5}

D. Ungar, R. B. Smith. Self: The Power of Simplicity. Proceeding
the Second ACM Conference on Object-Oriented Programming, Syste
and Applications (OOPSIA’87), Orlando, FL. SIGPLAN Notices, 22:
Oct.1987. {111}

C. Vetterli. OPUS: Entwurf und Realisierung efnes erweiterbai
objektorientierten Dokumentenverarbeitungssystems. Dissertation E
Zurich, No. 9456, Verlag der Fachvereine, Zurich, CH.1991. {34.

M. Weiser, A. Demers, C. Hauser. The Portable Common Runti
Approach to Interoperability. Proceedings of the Twelfth A
Symposium on Operating Systems Principles (SOSP'89), Litchfield P.
AZ. SIGOPS Operating System Reviews 23:5, 114-122. Dec. 1S
{253,34.2.4}

B. F. Webster. The NeXT Book. Addison-Wesley, Reading, MA. 1S
{2.2,34.7}
Application Framework NextStep using Display-Postscript.

P. Wegner. Concepts and Paradigms of Object-Orien
Programming. OOPS Messenger, 1:1,7-87. Aug.1990. {1.1.1}

N. Wirth, J. Gutknecht. The Oberon System, Technical Report,
Institute for Computer Systems, ETH Zurich, CH.Jul. 1988. {4.44

N. Wirth, J. Gutknecht. The Oberon System. Software ~ Practice .
Experience, 19:9, Sep. 1989. {1.11,2.2,3.11,3.1.2,3.31,3.4.2.2}

N. Wirth, J. Gutknecht, Project Oberon. The Design of an Operai
Systemn and Compiler. Addison-Wesley, Reading, MA. 1992. {
31.2,3.4.2.2,34.2.3,3.43,3452,4.2}

P. H. Winston, B. K. P. Horn. Lisp. Addison-Wesley, Reading, A
1981. (Corrected Reprint of Third Edition: 1989). {3.4.2.3}

Wil83

Wilg9

Wil92

Wir63

Wir71

Wir77

Wir82

Wir84

Wir88a

Wir88b

Wir89

231

G. Williams. The Lisa Computer System. BYTE, 8:2. Feb. 1983, {3.4.6}

Introduces the Lisa computer, including the LisaWrite editor with its characteristic
rulers.

M. Wille. Overview: Entwurf und Realisierung eines Fenstersystems fiir
Arbeitsplatzrechner. Dissertation ETH Zurich, No. 8771. Verlag der
Fachvereine, Zurich, CH.1989. {2.2,2.4.3,3.4.8.1}

P. R Wilson. Uniprocessor Garbage Collection Techniques.
Proceedings of the 1992 International Workshop on Memory
Management, St Malo, F. Lecture Notes in Computer Science.
Springer-Vetlag, Berlin, D.Sep.1992. {253}

Contains a thorough comparison of the most recent garbage collection
techniques for uniprocessors, including mark-and-scan, copying, and treatmill
collectors.

N. E. Wirth. A Generalization of Algol. Ph.D. Thesis. University of
California at Berkeley, CA.1963. {3.7.3}
Introduces the language Euler.

N. Wirth. The Programming Language PASCAL. Acta Informatica, 1,
35-63.1971. {3.7.3}

N. Wirth. Modula: A Programming Language for Modular
Multiprogramming. Software — Practice and Experience, 7:1, 37-52.
Jan.1977. {35.3,3.7.3}

Multi-programming based on conditions and monitors.

N. Wirtth. Programming in Modula-2. Texts and Monographs in
Computer Science. Springer-Verlag, Berlin, D. 1982, (Fourth edition:
1988). {1.1.1,24.2,3.2.1,3.7.3}

N. Wirth. Schemes for Multiprogramming and their Implementation
in Modula-2. Technical Report, 59. Institute for Computer Systems,
ETH Zurich, CH.Jun.1984. {3.4.4,353}

Coroutines and their use to implement higher multi-programming schemes.

N. Wirth. Type Extensions. ACM Transactions on Programming
Languages and Systems, 10:2, 204-214. Apr. 1988, {2.3.2, 31.2, 3.2.1,
3.4.2.1}

N. Wirth. The Programming Language Oberon. Software — Practice
and Experience,18:7,671-690.Jul.1988. {1.1.1,2.2,37.3}

N. Wirth. Designing a System from Scratch. Structured Programming,
13:1,10~18. Jan. 1989,

232

WMPx69 A. van Wijngaarden [ed.], B.J. Mailloux, J. E. L. Peck, C. H. A. Koster.
Report on the Algorithmic Language ALGOL 68. Numerische
Mathematik,14,79-218.1969. {3.7.3}

WS92 J. Wilkes, B. Sears. A Comparison of Protection Lookaside Buffers
and the PA-RISC Protection Architecture. Technical Report,
HPL-92-55, Hewlett-Packard Laboratories, Palo Alto, CA. Mar. 1992,
{4.4.2}

Lebenslauf:

Clemens Alden Szyperski

19.10.1962

1968-72

1972-81

1981
1981-87

1987
1987-92

Geboren in Philadelphia, PA, U.S.A,;
Doppelstaatsbirgerschaft Deutsch und U.S.—Amerikanisch
Eltern: Norbert und Edith Szyperski

Katholische Grundschule der Gemeinde Résrath,
Résrath, Deutschland

Freiherr-vom-Stein Gymnasium,
Résrath, Deutschland

Allgemeine Hochschulreife {Abitur)

Elektrotechnik, Spezialisierung Technische Informatik
Rheinisch-Westfilische Technische Hochschule,
Aachen, Deutschland

Diplom (Dipl.~Ing.)

Assistent, Institut fr Computersysteme

Eidgendssische Technische Hochschule Zirich, Schweiz

